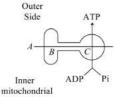
RESPIRATION IN PLANTS


1.	In the electron transport	system present in the inner	r mitochondrial membrane	, complexes I and IV are			
	respectively			1984)			
	a) NADH Dehydrogenase	and FADH ₂					
	b) NADH ₂ and NADH Deh	0.00					
		and cytochrome-c oxidase	complex				
	d) NADH dehydrogenase						
2.		oxidation of glucose is dor	ne under				
	a) Aerobic respiration	o .	b) Anaerobic respiration				
	c) Both (a) and (b)		d) None of these				
3.	The cellular respiration fi	rst takes place in the					
	a) Cytoplasm	b) Golgi bodies	c) ER	d) Lysosomes			
4.	- 1. The 18th - T	ientist has given the schem	550				
	a) Gustav Embden <i>et. al</i>		c) Fritz Lipmann <i>et. al</i>	d) None of these			
5.			ooth anaerobic and aerobic	(AT 1)			
	a) Glycolysis	b) EMP pathway	c) Both (a) and (b)	d) None of the above			
6.		cytochrome oxidase is pre-					
	a) Outer membrane	Tenner	b) Perimitochondrial spa	ce			
	c) Inner membrane		d) Matrix				
7.	TCA cycle enzymes are pr						
	a) Cytoplasm		b) Inter membrane space	of mitochondria			
	c) Mitochondrial matrix		d) Inner membrane of mi				
8.	Among the following, idea	ntify the substrate required	d for the only oxidative read	ction that occurs in the			
	process of glycolysis.	100 100 100 100 100 100 100 100 100 100	1C0				
	a) 3-phosphoglyceric acid	d					
	b) Glyceraldehyde 3-phos	sphate					
	c) Fructose-6-phosphate						
	d) Glucose-6-phosphate						
9.	Aerobic respiration is						
	a) The process in which c	omplete oxidation of organ	nic substances in the absen	ce of oxygen			
	b) The process in which complete oxidation of organic substances in the presence of oxygen						
	c) The process in which incomplete oxidation of organic substances in the absence of oxygen						
	d) The process in which in	ncomplete oxidation of org	anic substances in the pres	ence of oxygen			
10.	What will happen, when g	glucose is administered ora	illy?				
	a) Excretion	b) Digestion	c) Circulation	d) Respiration			
11.	How many ATP molecules	s could maximally be gener	rated from one molecule of	glucose, if the complete			
	oxidation of one mole of g	glucose to carbon dioxide a	nd water yields 686 kcal ar	nd the useful chemical			
	energy available in the hi	gh energy phosphate bond	of one mole of ATP is 12 kg	cal?			
	a) Two	b) Thirty	c) Fifty seven	d) One			
12.	5 5	$ m H_{2}$ is formed but in respira					
	a) HMP	b) ETS	c) Krebs' cycle	d) None of these			
13.	Plants does not need spec	cialised respiratory organ b	ecause				

		are of its own gas exchange	e b) Plants do not need gre	at demands for gas
	needs		exchange	
11	c) Both (a) and (b)		d) None of the above	
14.	Lactic acid is formed in	1201 1 :	2 mm al	DAY C.I
a =	a) Fermentation	b) Glycolysis	c) HMP pathways	d) None of these
15.	In which part of mitochon	dria does ATP synthesis of		
	a) F ₁		b) F ₀	
	c) Cristae	•	d) Inner membrane of mi	tochondria
16.	In oxidative decarboxylati		13.5	
	a) Pyruvate decarboxylas		b) Pyruvate dehydrogena	
4.5	c) Pyruvate hydrogenetic		d) Pyruvate dehydrogene	ticase
17.	Select the wrong statemen			
		ed as a substrate in respira		
		경기 시기 위에 가지면 시간 하고 있다면 하는 것이 되었다면 하지 않는데 없는데 없었다면 없다.	is with Krebs' cycle is malic	
		2	molecules during aerobic f	
			olecules during fermentati	
18.	Enzymes found attached t			is/are
	a) Succinic Dehydrogenas	e	b) Cytochrome oxidase	
2000E	c) Both (a) and (b)		d) Malic Dehydrogenase	
19.	Four respiratory enzymes		them in increasing order o	f the carbon number of the
	substrates on which they	act.		
	I. Enolase			
	II. Aconitase			
	III. Fumarase			
	IV. Alcohol Dehydrogenas			
	a) II, IV, III, I	b) IV, I, II, III	c) I, IV, III, II	d) IV, I, III, II
20.	Link enzyme in cellular re	spiration is	50 000 M 040	
	a) Citrate synthetase		b) Pyruvate Dehydrogena	ise
	c) Isocitrate Dehydrogena		d) Succinyl thiokinase	
21.	Beer and butter milk are p	products of fermentation b		
	a) <i>Rhizopus stolonifer</i>		b) Caedobacter taeniospi	
	c) <i>Bacillus subtilis</i>		d) Saccharomyces cerevis	siae
22.	Apparatus to measure rat		and the second second	2296027
	a) Auxanometer	b) Potometer	c) Respirometer	d) Manometer
23.	Acetyl Co-A binds to oxalo		120 2	was to
	a) Formaldehyde	b) Citrate	c) Acetate	d) Isocitrate
24.	In fermentation NADH is o			1000000 8010
	a) Fast	b) Slow	c) Usual	d) None of these
25.	Last electron acceptor in i	[19] [6] [19] [19] [19] [19] [19] [19] [19] [19	52070d 6 250 00d	
	a) Oxygen	b) Hydrogen	c) Carbon dioxide	d) NADH
26.	In animal cells, like muscl		is inadequate for cellular i	respiration, pyruvic acid is
	reduced into lactic acid by			
	a) 0 ₂		b) Carboxylation	
	 c) Lactate dehydrogenase 		d) None of the above	
27.	Glucose break down takes	place in fermentation		
	a) Partially		b) Completely	
	c) According to substrate		d) None of these	
28.	Plants need one of the foll			
	a) N and P	b) N and Cu	c) N and Ca	d) K
29	First witamin to be produc	and through formantation r	rocace using a wild bacteri	um wac

	a) Vitamin-D	b) Vitamin-C	c) Vitamin- B ₁₂	d) Vitamin-B ₂
30.	Fate of pyruvic acid duri	ng aerobic respiration is		
	a) Lactic acid fermentati	on	b) Alcoholic acid ferment	tation
	c) Oxidative decarboxyla	ntion	d) Oxidative phosphoryla	ation
31.	In respiration, respirator	ry substances can be used		
	a) Carbohydrate	b) Protein	c) Organic acid	d) All of these
32.	In oxidative decarboxyla	tion, only a carbon molecule	e of pyruvic acid is get oxic	lised, other two carbon
	molecule goes to form			
	a) Acetyl Co-A	b) CO ₂	c) Citric acid	d) Both (a) and (b)
33.		nsport system are present in		
	a) Inner mitochondrial n	The second state of the se	b) Matrix	
	c) Intermembranous spa		d) Endoplasmic reticulur	n
34.		dead and decaying matter fo	. 155	
	a) Saprophytes	b) Halophytes	c) Xerophytes	d) Nanophytes
35.	[2] [[1] [1] [[1] [[1] [[1] [[1] [[1] [[eaction does not take place i	in the cell organelle, that is	referred to as 'Power house
	of the cell'?	\$	<u> </u>	
	a) Glycine Decarboxylati	on	b) Glyceraldehyde 3-pho	sphate dehydrogenation
	c) Fumaric acid hydratic		d) Cytochrome oxidation	
36.		true regarding glycolysis?		
	I. Takes place in cytosol			
	II. Produces no ATP			
	III. Has no connection wi	th electron transport chain		
		es of NAD ⁺ for every glucos		
	Choose the correct optio	n	(E.)	
	a) Only I	b) I, II and III	c) I and II	d) None of these
37.	The reaction which is car	talysed by a protein that is r	not found in the matrix of r	nitochondria is
	a) Conversion of pyruvio	acid to acetyl coenzyme-A	b) Oxidative Decarboxyla	ation of $lpha$ -ketoglutaric acid
	c) Oxidation of Succinic	acid	d) Cleavage of Succinyl c	oenzyme-A
38.	All enzymes of TCA cycle	are located in the mitochor	ndrial matrix except one, w	hich is located in inner
	mitochondrial membran	es in eukaryotes and in cyto	osol in prokaryotes. This en	nzyme is
	a) Lactate Dehydrogenas	se	b) Isocitrate Dehydroger	nase
	c) Malate Dehydrogenas	e	d) Succinate Dehydroger	nase
39.	171.0 171	given reaction of Kreb's cyc		
	OAA + Acetyl Co - A + H	$H_2O \xrightarrow{A} Citric acid + Co - A$		
	a) Oxaloacetate syntheta	三 分	b) Citrate synthetase	
	c) Aconitase		d) Dehydrogenase	
40.	The enzymes for TCA cyc	cle are present in		
	a) Plastids		b) Golgi complex	
	c) Mitochondria		d) Endoplasmic reticulur	n
41.	Which one of the followi	ng is the terminal electron a	acceptor?	
	a) Molecular CO ₂	b) Molecular O ₂	c) Molecular H ₂	d) NADPH ₂
42.	In electron transport sys	tem, which of the following	acts as a final hydrogen ac	cceptor
	a) Oxygen	b) Hydrogen	c) Calcium	d) Ubiquinone
43.	If a starving plant is pro	vided with glucose, the rate	of respiration would	
	a) First rise then fall	b) Become constant	c) Decrease	d) Increase
44.	Which one is product of	aerobic respiration?		
	a) Malic acid	b) Ethyl alcohol	c) Lactic acid	d) Pyruvic acid
45.	Given below the diagram	nmatic presentation of ATP s	synthesis in mitochondria.	Identify A-C and Choose the
	correct ention according	dre		

CLICK HERE (>>>

membrance Matrix
a) $A - H^+$, $B - F_1$, $C - F_0$

b) $A - 3H^+$, $B - F_0$, $C - F_1$

c) $A - 2H^+, B - F_0, C - F_1$

d) $A - 5H^+, B - F_1, C - F_0$

- 46. In Krebs' cycle,
 - a) ADP is converted into ATP
 - b) Pyruvic acid is converted into CO2 and H2O
 - c) Glucose is converted into CO2
 - d) Pyruvic acid is converted into ATP
- 47. Decline in the activity of the enzyme Hexokinase by glucose-6-phosphate is caused by
 - a) Non-competitive
 - b) Competitive inhibitors
 - c) Allosteric modulators
 - d) Denaturation of enzyme
- 48. In which of the following reactions of glycolysis, oxidation takes place?
 - a) Glucose 6-PO₄ to fructose 6-PO₄
 - b) Glyceraldehydes 3-phosphate to 1, 3-diphosphoglycerate
 - c) 1,3-diphosphoglycerate to 3-phosphoglycerate
 - d) 2-phosphoglycerate to phosphoglycerate
- 49. During conversion of pyruvic acid into acetyl Co-A, pyruvic acid is
 - a) Oxidized
- b) Reduced
- c) Isomerized
- d) Condensed

- 50. During anaerobic respiration in yeast
 - a) H_2O and CO_2 are end-products
 - b) CO_2 , ethanol and energy are end-products
 - c) CO2, and H2O are end-products
 - d) CO2, acetic acid and energy are end-products
- 51. Choose the correct combination of A and B according to NCERT text book.

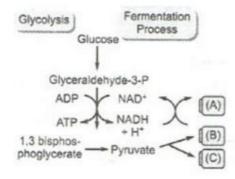
All living organisms need ...A... for carrying out daily life activities and is obtained by ...B... of macromolecules

a) A-oxygen; B-reduction

b) A-energy; B-reduction

c) A-energy; B-oxidation

- d) A-oxygen; B-oxidation
- 52. Most of the biological energy is supplied by mitochondria through
 - a) Breaking of proteins


b) Reduction of NADP+

c) Breaking of sugars

- d) Oxidising TCA (tricarboxylic acid) substrate
- 53. Chemiosmotic mechanism of ATP production in aerobic respiration was given by
 - a) Krebs
- b) Calvin
- c) Hatch and Slack
- d) Peter Mitchell
- 54. Choose the correct combination of labeling the molecules involved in the pathway of anaerobic respiration in yeast

- a) A Ethanol, B CO2, C Acetaldehyde
- b) A CO2, B Ethanol, C- Acetaldehyde
- c) A CO2, B Acetaldehyde, C- Ethanol
- d) A Ethanol, B Acetaldehyde, C CO2
- 55. Which of the metabolites is common to respiration mediated breakdown of fats, carbohydrates and proteins?
 - a) Glucose-6-phosphate

b) Fructose, 6-bisphosphate

c) Pyruvic acid

- d) Acetyl Co-A
- 56. In succulent plants like Opuntia, the RQ value will be
 - a) Less than one
- b) More than one
- c) Infinite
- d) Zero
- 57. The pyruvic acid formed during glycolysis is oxidized to ${\rm CO_2}$ and ${\rm H_2O}$ in a cycle called
 - a) Calvin cycle
- b) Nitrogen cycle
- c) Hill reaction
- d) Krebs' cycle

- 58. Respiratory enzymes are present in the following organelle
 - a) Peroxisome
- b) Chloroplast
- c) Mitochondrion
- d) Lysosome
- 59. An ATP molecule is structurally most similar to a molecule of
 - a) RNA nucleotide
- b) DNA nucleotide
- c) Amino acid
- d) Fatty acid
- 60. Read the following and choose the option containing correct pair
 - I. DCMU Herbicide Inhibitor of non-cyclic electron transport
 - II. PMA Fungicide Reduce transpiration
 - III. Colchicine Alkaloid Causes male sterility
 - IV. Soilrite Sodium alginate Encapsulation of somatic embryos
- a) I and II
- b) I and III
- c) II and III
- d) II and IV

- 61. Oxidation of one molecule of NADH gives rise to
 - a) 3 ATP molecules
- b) 12 ATP molecules
- c) 2 ATP molecules
- d) 1ATP molecule

- 62. Aerobic respiratory pathway is appropriately termed as
 - a) Catabolic
- b) Parabolic
- c) Amphibolic
- d) Anabolic

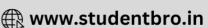
- 63. In alcohol fermentation,
 - a) There is no electron donor
 - b) Oxygen is the electron acceptor
 - c) Triose phosphate is the electron donor, while acetaldehyde is the electron acceptor
 - d) Triose phosphate is the electron donor, while pyruvic acid is the electron acceptor
- 64. In respiration breaking down of glucose with oxygen is known as
 - a) Oxidation process

- b) Reduction process
- c) Oxidation-oxaloacitation process
- d) All of the above
- 65. Net gain of ATP molecules per hexose during aerobic respiration is
 - a) 12

b) 18

c) 36

- d) 30
- 66. Which of these are respiratory poisons or inhibitors of electron transport chain?
 - a) Cyanides
- b) Antimycin-A
- c) Carbon monoxide
- d) All of these


- 67. Kreb's cycle is completed with the formation of
 - a) Citric acid

b) Oxaloacetic acid (OAA)

c) Succinic acid

d) Malic acid

68.	Where is ATP synthesise	d in glycolysis?		
	a) When 1, 3 di PGA is ch	anged into 3PGA		
	b) When glucose is conve	rted into glucose-6-phospl	nate	
	c) Both (a) and (b)			
	d) When, 1, 6 diphosphat	e is broken in triose phosp	hate	
69.	Maximum number of ATI			
	a) Glucose	b) Palmitic acid	c) Malic acid	d) β -amino acid
70.	Glycolysis takes place in	20 Mars - 10 Color 1965 - 1994 (2015) - 1995	South # Contract data in Contract + Remonstrations	
	a) All living cells		b) Eukaryotic cells only	
	c) Prokaryotic cells only		d) None of these	
71.	Krebs' cycle begins with	the reaction		
0.00	a) Citric acid +acetyl Co-		b) Oxaloacetic acid + pyr	uvic acid
	c) Oxaloacetic acid + citr		d) Oxaloacetic acid + ace	
72	Co-Factor required for fo		u) onaroucette ueru † uee	ty: 00 11
,	a) TPP	b) Lipoic acid	c) Mg ²⁺ , Co-A	d) All of these
73	In anaerobic respiration		c) Mg , do M	a) Thi of these
75.	a) Oxygen is absorbed	in plants	b) Oxygen in released	
	c) Carbon dioxide is relea	read	d) Carbon dioxide is abso	rhod
74			그리아 선생님은 아이들이 가장 살아왔다면 하는 사람이 되었다면 하는 것이 없는데 없는데 없다면 하다면 다른데 하는데 없다면 하	e compounds are identified
/4.	respectively as	(kg) of some of the compo	Junus are 4,1 and 0.7. These	e compounds are identified
		d and minclaster	h) Olin anid analahada	
	a) Malic acid, palmitic aci	(47)	b) Oxalic acid, carbohydr	3.5X
75	c) Tripalmitin, malic acid		d) Palmitic acid, carbohy	
75.	citric acid	catalysed when condensa	tion of acetyl group with ox	caloacetic acid and to yield
	a) Citrate permeate	b) citrate synthase	c) Citrate burate	d) Citrate maliate
76.	The respiratory quotient	(RQ) of a germinating cast	or seed is	872)
	a) Equal to one	b) Greater than one	c) Less than one	d) Equal to zero
77.	Glycolysis	ž.		
	I. causes partial oxidation	of glucose (one molecule)	to form 2-molecules of py	ruvic acid and 2 ATP as net
	gain	(a) (a) (a)	8 707.0	
	II. takes place in all living	cells		
	III. uses 2 ATP at two step			
		Gustav Embden, Otto Maye	rhof and J Parnas	
	Choose the correct option	n containing appropriate st	atements from the above	
	a) I, II and III	b) I, II and IV	c) I, II, III and IV	d) Only I
78.		orylation, the net gain of A		
	a) 40	b) 38	c) 34	d) 30
79.	Decarboxylation is involv			
	a) Electron transport sys			
	b) Glycolysis			
	c) Krebs' cycle			
	d) Lactic acid fermentation	on		
80.	Alternate name of TCA cy			
	a) Kreb's cycle	b) Grab's cycle	c) Mayerhoff cycle	d) Embden cycle
81.	(5)	75	energy daily. How many AT	
V		e to produce this much ene		
		e and 384 molecules of AT	~·	
		se and 264 molecules of AT		
	77.74	se and 657 molecules of AT		
	ATTACA TANAN SALAM S	se and 460 molecules of AT		
	a, 20 molecules of glucos	e and too molecules of Al	10	

82.	Which one of the follow	ing pairs is wrongly matched	d?	
	a) Methanogens - Gobar	r gas	b) Yeast - Ethanol	
	c) Streptomycetes - Ant	tibiotic	d) Coliforms - Vinegar	
83.	In hurdle race, which of	the following is accumulate	d in the leg muscle?	
	a) Performed ATP	b) Glycolysis	c) Lactate	d) Oxidative metabolism
84.	During the exercise, pyr		OF THE BOOK OF THE STATE OF THE	
	a) Lactic acid	b) Fumaric acid	c) Glutamic acid	d) Oxaloacetic acid
85.	The compounds which a	re oxidised during respirati	on are known as	
	a) Respiratory substrate	es	b) Oxalo acid	
	c) TCA cycle		d) None of these	
86.	Refer the given equation	1	150	
	$2(C_{51}H_{98}O_6) + 145O_2$	\rightarrow 102 CO ₂ + 98 H ₂ O + Ener	gy	
	The respiratory quotien		•	
	a) 1	b) 0.7	c) 1.45	d) 1.62
87.	Energy required for life	processes is obtained by	*	
	a) Oxidation	b) Reduction	c) Deduction	d) Antilation
88.	Choose the correct state	ment for the given options	40 - 1 0 (400 - 400 (400 (100 <u>400)</u> 100 (40 <u>40</u> 50)	
	a) Intermediates in the	pathway are utilised to synt	hesise other compounds	
	b) No alternative substr	ates other than glucose is al	lowed to enter the pathway	y at intermediate stages
	c) None of the substrate	is respired in the pathway	at intermediary stages	
	d) Pathway functioning	is insequential	a et a montale montale a successión de la estada de la estada de la c ultura de la contente de la estada del estada de la estada del estada de la estada del estada de la estada delega de la estada de	
89.	In plants, glucose is deri	ved from which of the follow	ving?	
	a) Protein	b) Fat	c) Oxalic acid	d) Sucrose
90.	The chemiosmotic coup	ling hypothesis of oxidative	phosphorylation proposes	that adenosine
	triphosphate (ATP) is fo	armed hecause		
		illed because		
		re formed in mitochondrial	b) ADP is pumped out of	the matrix into the
			b) ADP is pumped out of intermembrane space	the matrix into the
	a) High energy bonds ar	re formed in mitochondrial	intermembrane space	the matrix into the
	 a) High energy bonds are proteins 	re formed in mitochondrial	intermembrane space d) There is a change in th	
	a) High energy bonds are proteinsc) A proton gradient for membrane	re formed in mitochondrial	intermembrane space d) There is a change in the mitochondrial membra diphosphate (ADP)	e permeability of the inner ane towards adenosine
91.	a) High energy bonds are proteinsc) A proton gradient for membraneThe process by which the	re formed in mitochondrial rms across the inner nere is inhibition of aerobic r	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospheric	ne permeability of the inner ane towards adenosine oxygen is
	a) High energy bonds are proteinsc) A proton gradient for membraneThe process by which the a) Pasteur's effect	re formed in mitochondrial rms across the inner nere is inhibition of aerobic r b) Calvin's effect	intermembrane space d) There is a change in the mitochondrial membra diphosphate (ADP) respiration by atmospherical Darwin's effect	ne permeability of the inner ane towards adenosine oxygen is d) None of these
	a) High energy bonds are proteinsc) A proton gradient for membraneThe process by which the a) Pasteur's effect	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of o	intermembrane space d) There is a change in the mitochondrial membra diphosphate (ADP) respiration by atmospheric c) Darwin's effect oxygen consumed when the	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is
92.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose	intermembrane space d) There is a change in the mitochondrial membra diphosphate (ADP) respiration by atmospherical Darwin's effect	ne permeability of the inner ane towards adenosine oxygen is d) None of these
92.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is ea) Fat Anaerobic respiration is 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospherical company of the company of	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid
92. 93.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation	intermembrane space d) There is a change in the mitochondrial membra diphosphate (ADP) respiration by atmospheric c) Darwin's effect oxygen consumed when the	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is
92. 93.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of celebrate 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation lular respiration is to	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospherical company of the company of	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid
92. 93.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cella a) Convert potential energy 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation lular respiration is to ergy to kinetic energy	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospherical company of the company of	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid
92. 93.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cella) Convert potential energy b) Convert kinetic energy 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation clular respiration is to ergy to kinetic energy gy to potential energy	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospherical company of the company of	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid
92. 93.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy in the color of the colo	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose s also called as b) Fermentation lular respiration is to ergy to kinetic energy gy to potential energy cell	intermembrane space d) There is a change in the mitochondrial membradiphosphate (ADP) respiration by atmospherical control of the control of	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these
92. 93. 94.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the add Convert energy store 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation clular respiration is to ergy to kinetic energy sy to potential energy cell d in the chemical bonds of g	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical control of the contr	ne permeability of the inner ane towards adenosine oxygen is d) None of these erespiratory substrate is d) Organic acid d) None of these
92. 93. 94.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy convert kinetic energy convert kinetic energy convert energy store d) Convert energy store Which of the following store 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of c b) Sucrose s also called as b) Fermentation lular respiration is to ergy to kinetic energy sy to potential energy cell d in the chemical bonds of g substances yield less than 4	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical control of the contr	te permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these
92.93.94.95.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cel a) Convert potential energy c) Create energy in the add Convert energy store Which of the following start of the protein phosphate 	re formed in mitochondrial rms across the inner here is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose also called as b) Fermentation lular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of g substances yield less than 4 l b) ADP	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical control of the contr	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these
92.93.94.95.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the add Convert energy store which of the following standard converts and creatine phosphate Five gram mole of gluco 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose salso called as b) Fermentation fular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of grubstances yield less than 4 l b) ADP se on complete oxidation re	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical company of the compa	te permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these e cell can use te bond is hydrolysed? d) ATP
92.93.94.95.96.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the addition d) Convert energy store Which of the following states a) Creatine phosphate Five gram mole of gluco a) 3430 kcal of energy 	re formed in mitochondrial rms across the inner b) Calvin's effect evolved than the volume of o b) Sucrose also called as b) Fermentation lular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of g substances yield less than 4 l b) ADP se on complete oxidation re b) 343 kcal of energy	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical control of the contr	te permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these
92.93.94.95.96.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the add Convert energy store Which of the following so a) Creatine phosphate Five gram mole of gluconal 3430 kcal of energy NADP, NAD and FAD are 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose s also called as b) Fermentation lular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of grubstances yield less than 4 l b) ADP se on complete oxidation re b) 343 kcal of energy e acceptors of	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical company of the compa	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these e cell can use te bond is hydrolysed? d) ATP d) 430 kcal of energy
92.93.94.95.96.97.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the addition of the following states and creatine phosphate Five gram mole of gluco a) 3430 kcal of energy NADP, NAD and FAD are a) Phosphate 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose salso called as b) Fermentation fular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of grubstances yield less than 4 l b) ADP se on complete oxidation re b) 343 kcal of energy e acceptors of b) Electrons	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical company of the compa	te permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these e cell can use te bond is hydrolysed? d) ATP d) 430 kcal of energy d) Hydrogen
92.93.94.95.96.97.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the addition c) Create energy in the addition d) Convert energy store Which of the following stand a) Creatine phosphate Five gram mole of gluco a) 3430 kcal of energy NADP, NAD and FAD are a) Phosphate How many PGAL are process 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose s also called as b) Fermentation lular respiration is to ergy to kinetic energy ty to potential energy cell d in the chemical bonds of g substances yield less than 4 l b) ADP se on complete oxidation re b) 343 kcal of energy e acceptors of b) Electrons oduced by glycolysis of 3 mo	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical company of the compa	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these e cell can use te bond is hydrolysed? d) ATP d) 430 kcal of energy d) Hydrogen
92.93.94.95.96.97.	 a) High energy bonds are proteins c) A proton gradient for membrane The process by which the a) Pasteur's effect More carbon dioxide is a a) Fat Anaerobic respiration is a) β-oxidation The main purpose of cell a) Convert potential energy c) Create energy in the addition c) Create energy in the addition d) Convert energy store Which of the following stand a) Creatine phosphate Five gram mole of gluco a) 3430 kcal of energy NADP, NAD and FAD are a) Phosphate How many PGAL are process 	re formed in mitochondrial rms across the inner there is inhibition of aerobic r b) Calvin's effect evolved than the volume of o b) Sucrose salso called as b) Fermentation fular respiration is to ergy to kinetic energy gy to potential energy cell d in the chemical bonds of grubstances yield less than 4 l b) ADP se on complete oxidation re b) 343 kcal of energy e acceptors of b) Electrons	intermembrane space d) There is a change in the mitochondrial membrate (ADP) respiration by atmospherical company of the compa	ne permeability of the inner ane towards adenosine oxygen is d) None of these e respiratory substrate is d) Organic acid d) None of these e cell can use te bond is hydrolysed? d) ATP d) 430 kcal of energy d) Hydrogen

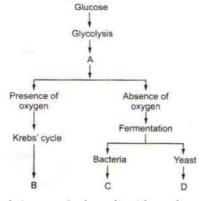
	 Identify the specific group, which carries out the following biochemical reaction: Aspartic acid+α-ketoglutaric acid →0xaloacetic acid+Glutamic acid 					
a) Synthetases b) Peptidases c) Transaminases d) Lyases 100. Which of following is connecting link between glycolysis and Krebs' cycle? a) Pyruvic acid b) Isocitric acid c) Acetyl Co-A d) Phosphoglyceric acid 101. Which one of the following reactions is an example of oxidative Decarboxylation? a) Conversion of succinate to fumarate b) Conversion of fumarate to malate c) Conversion of pyruvate to acetyl Co-A d) Conversion of citrate to isocitrate 102. If O ₂ is not present, yeast cells break down glucose to a) CO ₂ + H ₂ O b) CO ₂ + Lactic acid c) C ₂ H ₅ OH + H ₂ O d) C ₂ H ₅ OH and CO ₂ 103. How many ATP is released respectively when NADH and FADH ₂ molecules get oxidised?		d) Lyases				
	TO THE STATE OF TH	7.3 / 4 C - 7.2 / 5 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7		u) Lyases		
		lecting link between giyeor	ysis and Krebs Cycle:			
- 151						
Commence of the Sales		r reactions is an avample of	f avidativa Dagarbayylatia	_w ?		
		-				
100			STREET SOUR MANAGES OF STREET SOURCE			
		5) isocitrate		
		ranco arrego moras e e e		4) C II OII and CO		
			10 B B B B			
			- (1000년 1일 : 1985년 1			
- 5	3 ATP, 2 ATP	b) 2 ATP, 3 ATP	c) 5 ATP, 4 ATP	d) 3 ATP, 5 ATP		
	맛있다면 어디에 가지하다면 어느로 하는데 아니는 아래 주시 나는 아래 주시되는 아니라 사용하다 다	king down of C-C bond of v	arious organic molecules b	y oxidation process for		
	llular use is known as		L) DL			
1240	Respiration	•	b) Photorespiration			
	Oxidative phosphorylat		d) Combustion	. 11		
	and the state of t		cles in 1940. Which step is	called gateway step/link		
	action/transition reaction	on in respiration?	120 616	×		
	Glycolysis		b) Formation of acetyl Co			
	Citric acid formation	. CATED (1	d) ETS terminal oxidation			
		on acceptor of ATP synthe		13		
	cyt-a, a ₃ , b, c	b) cyt-b, c ,a, a ₃	c) cyt-b, c, a ₃ , a	d) cyt-c, b, a, a ₃		
			icose undergoes fermentat			
a)		b) 36	c) 2	d) 38		
	xidative decarboxylation		12.5	eren Angel automorphisms		
- T	Pyruvic acid is oxidised		b) Pyruvic acid is subsidised to oxygend) Pyruvic acid is subsidised to carbon dioxide			
	Pyruvic acid is oxidised		d) Pyruvic acid is subsidis	sed to carbon dioxide		
	n example of Pasteur's ef) C 1	D.M.		
	Penicillium	b) Pinnularia	c) Saccharomyces	d) Nostoc		
	ermentation is					
	Anaerobic respiration		b) Incomplete oxidation o	of carbohydrate		
	Complete oxidation of c	1. The contract of the contrac	d) None of the above			
	-	rnate name of which of the		12.6.1		
	HMP shunt	b) Glycolysis	c) TCA cycle	d) Calvin cycle		
			d during aerobic respiration	n, how many molecules of		
		ed due to Tricarboxylic acid				
- 5	One	b) Two	c) Three	d) Four		
	nt prior to its oxidation a) avan	W 1		
- 6	Cyclic AMP	b) Co-A	c) GMP	d) ATP		
	ne RQ value of oxalic acid		3.7			
	1.0	b) 0.7	c) 4	d) ∝		
	nergy currency of cell is	13.613	3 1000	D 61		
	Mitochondria	b) Chloroplast	c) ATP	d) Glucose		
	reak down process is also		3.5.1 (3.1.12)	D 411 6.1		
	Catabolism	b) Anabolism	c) Both (a) and (b)	d) All of these		
		abolic process in which sub	ostrate is oxidized without	an external electron		
ac	ceptor, is called					

a) glycolysis	b) Fermentation	c) Aerobic respiration	d) Photorespiration
118. How many times ATP is			
a) 2	b) 3	c) 4	d) 5
119. Aerobic respiration take	49E		
a) Mitochondria	b) Ribosome	c) Glogi body	d) Both (a) and (b)
120. Sequence of events in K	10 to		
a) Acetyl Co-A → Citrate ketoglutaralte	e → Pyruvate → Oxaloacetic	acid ← fumarate ← Malate •	← Succinate α -
b) Acetyl Co-A → Citric a	acid $ ightarrow \alpha$ -ketoglutarate acid	→ Oxaloacetic acid ← Malic	acid ← Fumaric acid ←
Succinic acid	ACCES SAME MADE SERVICES SCIENT SCIENT		
	acid → Malic acid Oxaloacet	c ← Oxaloacetic acid Succin	iic ← α-ketoglutaric acid ←
d) All are wrong	V 989 1927 6825		
121. Which of the following i	s a 4-carbon compound?		
a) Oxaloacetic acid		b) Phosphoglyceric acid	
c) Ribulose bisphospha		d) Phosphoenol pyruvate	2
122. An example of non-com			72
a) The inhibition of succ	cinic Dehydrogenase by	b) Cyanide action on cyto	ochrome oxidase
Malonate			
c) Sulpha drug on folic a	acid synthesizing bacteria	d) The inhibition of Hexo	kinase by glucose 6-
		phosphate	
123. What is the net ATP mo		0.75	974 3
a) 8 ATP	b) 20 ATP	c) 144 ATP	d) 16 ATP
124. Chemiosmosis hypothes			Do I carabbit
a) Synthesis of NADH	b) Synthesis of ATP	c) Synthesis of FADH ₂	d) Synthesis of NADPH
125. Glycolysis			
5 m 1 1 1 1 1	5 (C) (CON)		
a) Takes place in the mi	tochondria		
b) Produces no ATP			
b) Produces no ATPc) Has no connection w	ith electron transport chain		
b) Produces no ATPc) Has no connection with the c	ith electron transport chain es of NAD+ for every glucose		
 b) Produces no ATP c) Has no connection wind d) Reduce two molecule 126. Citric acid cycle is also keep 	ith electron transport chain es of NAD ⁺ for every glucose known as	molecule processed	N. S.
b) Produces no ATP c) Has no connection wi d) Reduce two molecule 126. Citric acid cycle is also k a) Tricarboxylic acid cyc	ith electron transport chain es of NAD ⁺ for every glucose known as	molecule processed b) Oxidative decarboxyla	tion
b) Produces no ATP c) Has no connection wi d) Reduce two molecule 126. Citric acid cycle is also k a) Tricarboxylic acid cycle c) Fermentation cycle	ith electron transport chain es of NAD ⁺ for every glucose known as cle	molecule processed	tion
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also kan an arricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is	b) Oxidative decarboxyla d) Both (a) and (b)	
b) Produces no ATP c) Has no connection wi d) Reduce two molecule 126. Citric acid cycle is also k a) Tricarboxylic acid cyc c) Fermentation cycle 127. Instantaneous source of a) Protein	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats	tion d) Glucose
b) Produces no ATP c) Has no connection wid Reduce two molecules 126. Citric acid cycle is also kan Tricarboxylic acid cycle c) Fermentation cycle 127. Instantaneous source of an Protein 128. Before entering into the	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into	d) Glucose
b) Produces no ATP c) Has no connection wid Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glyceres	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbi	d) Glucose c acid
b) Produces no ATP c) Has no connection wid Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycle 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerec) Fatty acid and ascorb	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid	d) Glucose c acid acid
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also kan an arricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of an an arricarboxylic acid and protein 128. Before entering into the an arricarboxylic acid and ascorbox arrival acid acid acid acid acid acid acid acid	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbided and ascorbided and amino anolecule of water is remove	d) Glucose c acid acid d from the substrate?
b) Produces no ATP c) Has no connection wid Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glyceres c) Fatty acid and ascorbs 129. In which of the following Fructose-6-phosphates	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid) Fatty acid and amino anolecule of water is remove	d) Glucose c acid acid d from the substrate? dehyde → 1, 3
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycle 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycere c) Fatty acid and ascorb 129. In which of the followin Fructose-6-phosphate bisphosphate	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid and amino anolecule of water is remove b) a-phosphate-glycerald bisphosphoglyceric ac	d) Glucose c acid ncid d from the substrate? dehyde → 1, 3 id
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keen a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerec; Fatty acid and ascorbs 129. In which of the following Fructose-6-phosphates bisphosphate c) PEP → Pyruvic acid	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b col oic acid g reactions of glycolysis, a me e → Fructose-1, 6-	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino a nolecule of water is remove b) 3-phosphate-glycerald bisphosphoglyceric ac d) 2- phosphoglycerate —	d) Glucose c acid ncid d from the substrate? dehyde → 1, 3 id
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keen a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glyceroc) Fatty acid and ascorbs 129. In which of the following Fructose-6-phosphates bisphosphates c) PEP → Pyruvic acids 130. The reactions of Pentose	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b col oic acid g reactions of glycolysis, a me e → Fructose-1, 6-	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino a nolecule of water is remove b) 3-phosphate-glycerald bisphosphoglyceric ac d) 2- phosphoglycerate — take place in	d) Glucose c acid ncid d from the substrate? dehyde → 1, 3 id
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerec; Fatty acid and ascorbs 129. In which of the followin bisphosphates c) PEP → Pyruvic acid 130. The reactions of Pentose a) Mitochondrion	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n e → Fructose-1, 6-	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino anolecule of water is remove b) a-phosphate-glycerale bisphosphoglyceric acid 2- phosphoglycerate - take place in b) Cytoplasm	d) Glucose c acid acid d from the substrate? dehyde → 1, 3 id → PEP
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keen a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glyceroc; Fatty acid and ascorbs 129. In which of the following Fructose-6-phosphates bisphosphates c) PEP → Pyruvic acids 130. The reactions of Pentose a) Mitochondrion c) Chloroplast, peroxiso	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n e → Fructose-1, 6- e Phosphate Pathway (PPP) ome and mitochondrion	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino a nolecule of water is remove b) 3-phosphate-glycerald bisphosphoglyceric ac d) 2- phosphoglycerate — take place in	d) Glucose c acid acid d from the substrate? dehyde → 1, 3 id → PEP
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle c) Fermentation cycle 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerec; Fatty acid and ascorb 129. In which of the following Fructose-6-phosphate bisphosphate c) PEP → Pyruvic acid 130. The reactions of Pentose a) Mitochondrion c) Chloroplast, peroxisos 131. In citric acid cycle first seep also we have a produced as a produced as a produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction and the produced as a period of the following bisphosphate conduction are produced as a period of the following bisphosphate conduction are produced by the following bisphosphate conduction are produced	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n e → Fructose-1, 6- e Phosphate Pathway (PPP) ome and mitochondrion step is	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino anolecule of water is remove b) bisphosphate-glycerald bisphosphoglyceric acid () 2- phosphoglycerate — take place in b) Cytoplasm d) Chloroplast, glyoxysor	d) Glucose c acid ncid d from the substrate? dehyde → 1, 3 id → PEP me and mitochondrion
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerec; Fatty acid and ascorbs 129. In which of the following a) Fructose-6-phosphate bisphosphate c) PEP → Pyruvic acid 130. The reactions of Pentose a) Mitochondrion c) Chloroplast, peroxisos 131. In citric acid cycle first sea) Acetyl Co-A combines	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b col oic acid g reactions of glycolysis, a n e → Fructose-1, 6- e Phosphate Pathway (PPP) ome and mitochondrion step is s with oxalo acetic acid	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino a nolecule of water is remove b) a-phosphate-glycerale bisphosphoglyceric ac d) 2- phosphoglycerate – take place in b) Cytoplasm d) Chloroplast, glyoxysor	d) Glucose c acid acid d from the substrate? dehyde → 1, 3 id → PEP me and mitochondrion with citric acid
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keen a) Tricarboxylic acid cycle c) Fermentation cycles 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glyceroc; Fatty acid and ascorbs 129. In which of the following Fructose-6-phosphates bisphosphates c) PEP → Pyruvic acids 130. The reactions of Pentose a) Mitochondrion c) Chloroplast, peroxisos 131. In citric acid cycle first sea Acetyl Co-A combines c) Citric acid combines sea	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n e → Fructose-1, 6- e Phosphate Pathway (PPP) ome and mitochondrion step is s with oxalo acetic acid with oxaloacetic acid	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino anolecule of water is remove b) bisphosphate-glycerald bisphosphoglyceric acid () 2- phosphoglycerate — take place in b) Cytoplasm d) Chloroplast, glyoxysor	d) Glucose c acid acid d from the substrate? dehyde → 1, 3 id → PEP me and mitochondrion with citric acid
b) Produces no ATP c) Has no connection wid) Reduce two molecules 126. Citric acid cycle is also keep a) Tricarboxylic acid cycle 127. Instantaneous source of a) Protein 128. Before entering into the a) Fatty acid and glycerecy Fatty acid and ascorbs 129. In which of the followin a) Fructose-6-phosphate bisphosphate c) PEP → Pyruvic acid 130. The reactions of Pentose a) Mitochondrion c) Chloroplast, peroxisos 131. In citric acid cycle first seep a) Acetyl Co-A combines con Citric acid combines seep as a complex condition of the combines of the combine	ith electron transport chain es of NAD ⁺ for every glucose known as cle f energy is b) Lipid e respiratory pathway fats b ol oic acid g reactions of glycolysis, a n e → Fructose-1, 6- e Phosphate Pathway (PPP) ome and mitochondrion step is s with oxalo acetic acid with oxaloacetic acid	b) Oxidative decarboxyla d) Both (a) and (b) c) Fats reakdown into b) Fatty acid and ascorbid d) Fatty acid and amino a nolecule of water is remove b) a-phosphate-glycerale bisphosphoglyceric ac d) 2- phosphoglycerate – take place in b) Cytoplasm d) Chloroplast, glyoxysor	d) Glucose c acid acid d from the substrate? dehyde → 1, 3 id → PEP me and mitochondrion with citric acid

b) Pyruvate ded	b) Pyruvate decarboxylase and enolase						
	carboxylase and pyruvate kinase						
	boxylase and aldolase						
	acceptor during oxidation of which						
	ate→Succinyl Co-A	b) Succinic acid → Fur					
	A → Succinic acid	d) Fumaric acid → Ma	llic acid				
	llowing substrate can enter into th	_	12.411.00.1				
a) Glucose	b) Amino acid	c) Fatty acid	d) All of these				
	ay be expected for the complete o						
a) Glucose	b) Malic acid	c) Oxalic	d) Tartaric acid				
	espiratory substrate, which of the b) Protein	c) Carbohydrate	d) All of these				
a) Fatty acid	iration generally occurs in	c) Carbonyurate	d) All of these				
	ism, <i>e.g.,</i> bacteria and fungi	b) Higher organism, ϵ	σ animal				
c) Both (a) and		d) None of the above	.g., ammar				
	following, reduction of NAD does						
	→ α-ketoglutaric acid						
5	Oxaloacetic acid						
	→Acetyl coenzyme						
S 100	⊢Fumaric acid						
139. How many NAI	OH + H ⁺ molecule is released in Kr	reb's cycle?					
a) 3	b) 6	c) 12	d) 14				
140. Cell respiration	is carried out by						
a) Ribosome	b) Mitochondria	c) Chloroplast	d) Golgi bodies				
	nergy obtained by oxidation is stor						
	ion gradient across a membrane	b) ADP					
c) ATP	100 0000000000000000000000000000000000	d) NAD ⁺					
	otient (RQ) is one in case of						
a) Fatty acids	b) Nucleic acids	c) Carbohydrates	d) Organic acids				
	llowing substrates is used in the fo		J) F				
a) Sucrose	b) Glucose	c) Galactose	d) Fructose				
	orrect sequence in glycolysis? → 3-PGAL → 3-PGA	b) G-6-P→3-PGAL → 3	$\Omega_{-}DCA \rightarrow DED$				
370°	\rightarrow 3-PGA \rightarrow 3-PGAL	d) G-6-P \rightarrow 3-PGA \rightarrow 3-1					
145. Cyanide resista		uju o i 75 i un 75 i	I GALL AT LI				
a) Anaerobic re		b) Aerobic respiration	1.				
c) Both (a) and	-	d) None of these					
	ne in glycolysis and pentose phosp						
a) Hexokinase	b) aconitase	c) Fumarase	d) Dehydrogenase				
	iration complete oxidation of pyru	vate by the stepwise remo	oval of all the hydrogen atom				
makes mo	lecule of CO ₂						
a) 2	b) 3	c) 4	d) 5				
148. Phase common	in aerobic and anaerobic respirati	ion is					
a) TCA cycle	b) Glycolysis	c) Glycogenolysis	d) ETS				
	oduced during anaerobic glycolysi						
a) 6 ATP molec		c) 8 ATP molecules	d) None of these				
	on of ethanol, pyruvic acid is first o		by the enzyme.				
a) Alcohol Dehy		b) Alcohol oxidase	OV.				
c) Pyruvate Del		d) Pyruvate decarbox	ylase				
151. The activity of s	51. The activity of succinate Dehydrogenase is inhibited by						

a) Pyruvate	b) Glyce	olate	c) Melonate	d) Phosphoglycerate
152. Citric acid is indu	The same and the s		cy rielenate	a) i neopnog.j cerat.
a) Streptococcus			b) Aspergillus niger	
c) Penicillium pu			d) Lactobacillus delb	reukii
		nic substan	ce which are during respi	
a) Oxidised	b) Redu		c) Both (a) and (b)	d) Synthesised
154. The oxidation of p				
a) Fermentation	.,	- 2 2	b) Citric acid cycle	
c) Glycolysis			d) Oxidative phospho	orvlation
155. Preparatory phas	e before ferment	ation is	и) отщин оргоорт	,
a) Upstream proc		nstream pro	ocess c) Inoculation	d) Filtration
156. For retting of jute		_		,
a) Helicobactor p	100 Sept. 100 Se		b) Methophilic bacte	ria
c) Streptococcus			d) <i>Butyric acid bacte</i>	
		ellular respi	ration would depend on the	
a) Nature of enzy			b) Nature of the subs	strate
c) Amount of carl		sed	d) Amount of oxygen	
5			S of inner mitochondrial men	
a) NADH Dehydro			b) Cytochrome oxida	
c) Ubiquinone	8		d) ATP synthase	
	annot be used as	a respirator	ry substrate, it breaks down	into
a) Amino acid	b) Fatty		c) Glycolytic acid	d) Fumaric acid
160. Ethyl alcohol is co	1000			aj i amario acia
a) Bajra	b) Grap		c) Maize	d) Sugarcane
161. Biological oxidati			ey manze	a) sugareane
a) 0 ₂	b) CO ₂		c) 0 ₃	d) NO ₂
162. Last electron acce		is	c) 03	a) No ₂
a) 0 ₂	b) cyt- <i>a</i>		c) cyt-a ₂	d) cyt-a ₃
163. Which enzyme co			ey eye az	a) cyc a3
a) Zymase	b) Dias		c) Invertase	d) Lipase
164. Glycolysis is a par		tuse	c) invertuse	и) призе
a) Anaerobic resp			b) Aerobic respiration	on only
c) Both (a) and (l			d) Krebs' cycle	ii omy
165. When tripalmitin	\$ 0.000 and 10.000	trate in rest		
a) >1	b) 1.0	trate in resp	c) 0.9	d) 0.7
166. Read the followin		se the corre		u) 0.7
V. DCMU	Herbicide		f non-cyclic electron transpo	rt
VI. PMA	Fungicide		anspiration	
VII. Colchicine	Alkaloid		nale sterility	
VIII. Soilrite			apsulation of somatic embryo	ns
a) I, II	b) I, III	5mace Brice	c) II, III	d) II, IV
167. In aerobic respira		nolecules of		aj II, IV
a) Matrix of the m		ioiccuics of	b) Inner membrane of	of the mitochondria
c) Both (a) and (l			d) Anywhere in the n	
168. In anaerobic resp	. 🕮	aroduce	uj Ally where in the h	intocholidi la
a) Lactic acid		nic acid	c) Acetic acid	d) Glutamic acid
			lue to release of Carbon diox	
a) Yeast	b) Bact		c) Virus	d) Protozoans
170. Before entering re				uj i i otozoalis
a) Decarboxylate			c) Deaminated	d) Phosphorylated
a, Decai bunviate	u DJIIVU	DIYSCU	c) Deammateu	uj i nospholylateu

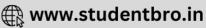
171. The intermediate compound common for aerobic a	nd anaerobic respiration is					
a) Citric acid b) Pyruvic acid	c) Acetyl Co-A d) Succinic acid					
172. How many ATP molecules are obtained from ferme	ntation of 1 molecule of glucose?					
a) 2 b) 4	c) 3 d) 5					
173. During which stage in the complete oxidation of glu	cose are the greatest number of ATP molecules formed					
from ADP?						
 a) Conversion of pyruvic acid to acetyl Co-A 	b) Electron transport chain					
c) Glycolysis	d) Krebs' cycle					
174. In plants the cells in the interior parts are						
a) Dead and for mechanical support	b) Live and for various purpose					
c) Both (a) and (b)	d) None of the above					
175. Ultimate source of energy in biosphere, is	24 100					
a) Sunlight b) Protein	c) Fats d) Enzymes					
176. Dough kept overnight in warm weather becomes so	하게 있어 없어졌습니다. " (1915년 - 1915년					
a) Absorption of carbon dioxide from atmosphere	b) Fermentation					
c) Cohesion	d) Osmosis					
177. The respiratory quotient (RQ) or respiratory ratio	S Volume of O. consumed					
a) RQ = $\frac{\text{Volume of O}_2 \text{ evolved}}{\text{Volume of CO}_2 \text{ consumed}}$	b) RQ = $\frac{\text{Volume of O}_2 \text{ consumed}}{\text{Volume of CO}_2 \text{ evolved}}$ d) RQ = $\frac{\text{Volume of CO}_2 \text{ evolved}}{\text{Volume of O}_2 \text{ consumed}}$					
Volume of CO consumed	Volume of CO ₂ evolved					
c) RQ = $\frac{\text{Volume of CO}_2 \text{ consumed}}{\text{Volume of O}_2 \text{ evolved}}$	d) RQ = $\frac{\text{Volume of O}_2 \text{ evolved}}{\text{Volume of O}_2 \text{ consumed}}$					
178. Maximum amount of energy/ATP is liberated on ox						
a) Fats b) Proteins	c) Starch d) Vitamins					
179. $NADH_2 \rightarrow FAD \rightarrow FADH_2$	c) starch u) vitallins					
The given reaction occurs in						
a) Heart cells b) Kidney cells	c) Liver cells d) Nerve cells					
180. Net yield of ATP molecules in aerobic respiration de						
a) 2 ATP molecules	b) 8 ATP molecules					
c) 36 ATP molecules	d) 38 ATP molecules					
181. Respiratory quotient can very due to	a) botti molecules					
a) Temperature	b) Respiratory substrate					
c) Light and oxygen	d) Respiratory product					
182. In anaerobic respiration the correct sequence of car						
a) Glycolysis, TCA cycle, oxidative phosphorylation						
b) Glycolysis, fermentation						
c) Glycolysis, oxidative phosphorylation, TCA cycle						
d) Oxidative phosphorylation, TCA cycle, glycolysis						
183. In eukaryotes, photosynthesis occurs in						
a) Chloroplast b) Stomatal opening	c) Bark d) Roots					
184. In yeast during anaerobic respiration, how many gl	ucose molecules are required for production of 38 ATP					
molecules?						
a) 1 b) 2	c) 19 d) 38					
185. Which of the following is involved in the catalysis o	f link reaction during aerobic during aerobic					
respiration?						
a) Vitamin- A b) Vitamin- B ₁	c) Vitamin- B ₆ d) Vitamin- K					
186. Respiratory quotient in anaerobic respiration is						
a) 0.7 b) 0.9	c) Unity d) Infinity					
187. Choose the correct combination of A and B in accor						
The NADH synthesised inA is transferred into t	and a property of the contract					
a) A-EMP; B-carboxylation	b) A-ETS; B-phosphorylation					

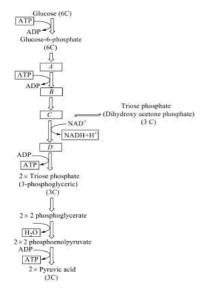

c) A-glycolysis; B-phosphorylation d) A-TCA cycle; B-decarboxylation 188. Total gain of ATP molecules during aerobic respiration of one molecule of glucose b) 38 c) 40 d) 34 189. Which of the following enzyme is responsible for formation of glucose from glucose-6-phosphate? b) Aldolase c) Dehydrogenase d) Phosphatase a) Kinase 190. Alcoholic fermentation takes place in the presence of b) Zymase c) Amylase d) Invertase a) Maltase 191. Which of these steps in Krebs' cycle indicates substrate level phosphorylation? a) Conversion of succinyl acid to ∝-ketoglutaric acid b) Conversion of succinic acid to malic acid c) Conversion of succinyl Co-A to succinic acid d) Conversion of malic acid to oxalo acetic acid 192. Identify A and B in the given reaction Pyruvic acid +Co-A +NAD⁺ $\xrightarrow{Mg^{2+}}$ A + B + NADH + H⁺ a) A-PEP; B-CO2 b) A-Acetyl Co-A; B-CO₂ c) A-CO2; B-H2O d) A-Acetyl Co-A; B-H2O 193. In which one of the following reactions, oxidative Decarboxylation does not occur? a) Malic acid → Pyruvic acid b) Pyruvic acid → Acetyl Co-A Glyceraldehyde 3-phosphate → 1, 3d) α -ketoglutaric acid \rightarrow Succinyl Co-A bisphosphoglycolysis acid 194. Anaerobic respiration can occur a) Lower organism b) Higher plants and animals d) None of the above c) Both (a) and (b) 195. The three boxes in this diagram represent the three major biosynthetic pathways in aerobic respiration. Arrows represent net reactants or products The numbered 2, 2, 6 can all be d) FAD2 or FADH2 a) NADH b) ATP c) H_2O 196. The main purpose of electron transport chain is to a) Cycle NADH + H⁺ back to NAD⁺ b) Use the intermediate from TCA cycle c) Breakdown pyruvic acid d) All of the above 197. How many ATP are formed during the citric acid cycle? a) 12 b) 24 c) 32 d) 35 198. RQ is always less than one in a) Wheat b) Millets c) Bean d) Castor 199. In glycolysis from glucose to pyruvic acid involves more than seven reaction. Each individual reaction needs a) One molecule of ATP b) One molecule of ADP c) One molecule of NAD d) One molecule of specific enzyme 200. Which one is true for ATP? a) ATP is prosthetic part of an enzyme b) ATP is an enzyme c) ATP is organic ions of enzyme d) ATP is a coenzyme 201. Oxidative phosphorylation refers to b) The citric acid cycle production of ATP a) Anaerobic production of ATP c) Production of ATP by chemiosmosis d) Alcoholic fermentation

- 202. Which one is not correct about Krebs' cycle?
 - a) It is also called citric acid cycle
 - b) The intermediate compound which links glycolysis with Krebs' cycle is malic acid
 - c) It occurs in mitochondria
 - d) It starts with six carbon compound
- 203. Which specialised cell provides interconnectivity for air spaces?
 - a) Parenchyma
- b) Chlorenchyma
- c) Sclerenchyma
- d) None of these

- 204. Steps of respiration are controlled by
 - a) Substrates
- b) Enzymes
- c) Hormone
- d) Bile juice

- 205. The similarity between NAD⁺ and NADP⁺ is that
 - a) Take up electron at a time


- b) Take up two protons at a time
- c) Take up two electrons at a time
- d) Give up one protons at a time
- 206. The following is a simplified scheme showing the fate of glucose during aerobic and anaerobic respiration. Identify the end products that are formed at stages indicated as A, B, C and D. identify the correct option from these given below.



- Carbon dioxide and water, B- Pyruvic acid, C- Ethyl alcohol and carbon dioxide, D- lactic acid a) 1.
- Pyruvic acid, B- Carbon dioxide and water, C- Lactic acid, D- Ethyl alcohol and carbon b) 1. dioxide
- c) 1. Pyruvic acid, B- Carbon dioxide and water, C- Ethyl alcohol and carbon dioxide, D- Lactic
- Pyruvic acid, B- Ethyl alcohol and carbon dioxide, C- Lactic acid, D- Carbon dioxide and d) 1. water
- 207. The process by which ATP is produced in the inner membrane of a mitochondrion, the electron transport system transfers protons from the inner compartment to the outer, as the protons flow back to the inner compartment, the energy of their movement is used to add phosphate to ADP, forming ATP is
 - a) Chemiosmosis
- b) Phosphorylation
- c) Glycolysis
- d) Fermentation
- 208. The haem protein complexes, which act as oxidizing agents are known as
 - a) Haemoglobin
- b) Myoglobin
- c) Chlorophyll
- d) Cytochrome

- 209. If RQ is 0.6 in a respiratory metabolism, it would mean that
 - a) Carbohydrates are used as respiratory substrate b) Organic acids are used as respiratory substrate The oxidation of the respiratory substrate
 - c) consumed more oxygen than the amount of CO₂ released
- d) The oxidation of respiratory substrate consumed less oxygen than the amount of CO_2 released
- 210. The flowchart given below shows the steps in glycolysis. Select the option that correctly fills in the missing steps A, B, C and D

- a) A-Fructose-6-phosphate, B-Fructose-1, 6-biphosphate, C-3-PGAL, D-1, 3-biphosphoglyceric acid
- b) A-Fructose-1, 6-biphosphate, B-3-PGAL, C-1, 3-biphosphoglyceric acid, D-3-PGA
- c) A-3-PGA, B-1, 3-biphosphoglyceric acid, C-3-PGAL, D-Fructose-1, 6-biphosphate
- d) A-Fructose-1, 6-biphosphate, B-Fructose-6-biphosphate, C-3-PGAL, D-1, 3-biphosphoglyceric acid
- 211. A scientist added a chemical (cyanide) to an animal cell to stop aerobic respiration. Which of the following is most likely to have been affected by this treatment?
 - a) Active transport of substances across the plasma membrane
 - b) Passive transport of substances across the plasma membrane
 - c) Diffusion of substances across the plasma membrane
 - d) The thickness of the plasma membrane
- 212. Wine and beer are produced directly by fermentation. Brandy and whisky require both fermentation and distillation because
 - a) Fermentation is inhibited at an alcohol level of 10-18%
 - b) Distillation prolongs storage
 - c) Distillation improves quality
 - d) Distillation purifies the beverage
- 213. For gaseous exchange plants have
 - a) Stomata
 - b) Lenticels
- c) Pores
- d) Both (a) and (b)

- 214. Citric acid cycle was discovered by
 - a) Hans Krebs'; 1937
- b) Jon Mathai; 1937 215. Vitamin-C was the first vitamin to be produced by a fermentation process using
 - c) Parna; 1936
- d) Embeden; 1936
- a) Penicillium b) E. coli c) Yersinia pestis

a) 3

- 216. Net gain of ATP from one molecule of glucose in glycolysis, is

c) 8

d) Acetobacter

d) 2

- 217. In Krebs' cycle, GTP is formed in
 - a) Oxidative phosphorylation

- b) Substrate level phosphorylation
- c) Photophosphorylation
- d) Decarboxylation
- 218. A competitive inhibitor of Succinic Dehydrogenase is
 - a) Malonate
- b) Oxaloacetate
- c) α -ketoglutarate
- d) Malate
- 219. The net gain of ATP from complete oxidation of one molecule of glucose in eukaryote is
 - a) 2

b) 4

c) 24

d) 36

- 220. Animals are
 - a) Heterotrophic
- b) Autotrophic
- c) Both (a) and (b)
- d) None of these
- 221. During Kreb's cycle of ...A... NADH, ...B... ATP is produced through ETS in mitochondria. Choose, the correct pair from the option given below

a) A-2; B-4	b) A-4; B-2	c) A-6, B-18	d) A-2; B-8						
222. Product of glycolysis is									
a) Citric acid									
b) Dihydroxy acetone									
c) Pyruvic acid									
d) Phosphoenol pyruva	te								
223. Electron Transport Sys	em (ETS) occurs in								
a) Inner mitochondrial	membrane	b) Outer mitochondrial r	nembrane						
c) Both (a) and (b)		d) Not specific place							
224. In aerobic respiration, o	ritric acid cycle takes place i	n							
a) Cytosol		b) Mitochondria							
c) Peroxisome		d) Endoplasmic reticulur	n						
225. If RQ is less than 1.0 in	a respiratory metabolism, it	would mean that							
a) Carbohydrates are u	sed as respiratory substrate								
b) Organic acids are use	ed as respiratory substrate								
c) The oxidation of the	respiratory substrate consu	med more oxygen than the	amount of CO ₂ released						
d) The oxidation of the	respiratory substrate consu	med less oxygen than the a	mount of CO ₂ released						
226. Calorie is the unit of									
a) Sound	b) Temperature	c) Light	d) Heat						
227. Which of the following	organism is useful in the pre	paration of Roquefort chee	ese?						
a) Mucor	b) Rhizopus	c) Aspergillus	d) Penicillum						
228. What is the correct ord	er of the stages of cellular re	spiration?							
a) Krebs' — Elec	etron	 Glycolysis cycle transp 	ort chain						
b) Electron — Kre	bs' cycle	 Glycolysis transport 	chain						
c) Glycolysis —Krel	os' cycle	 Electron transport ch 	nain						
d) Glycolysis — Ele	ctron transport chain	Krebs' cycle							
229. The term glycolysis has	originated from the Greek v	vord and							
a) Glycos, lysis	b) Glycol, analysis	c) Glycerol, lysis	d) Glycol, lysis						
230. The organelle associate	d with aerobic respiration is	3							
a) Chloroplast	b) Centriole	c) Nucleus	d) Mitochondria						
231. Incomplete breakdown	of sugar in anaerobic respir	ation forms							
	lioxide		oxide						
c) Water and carbon di		d) Fructose and water							
232. The total energy trappe									
a) 35%	b) 55%	c) 45%	d) 25%						
233. Phase common in aerol									
a) Krebs' cycle	b) Glycolysis	c) Glycogenolysis	d) ETS						
234. Synthesis process in or									
a) Catabolism	b) Anabolism	c) Both (a) and (b)	d) None of these						
235. Oxalosuccinic acid, an i									
a) 5-carbon compound	- 14 14 1 - 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10	c) 4-carbon compound	d) 3-carbon compound						
236. Which of the following	process takes place in mitoc								
a) Photolysis		b) Photophosphorylation							
c) Carboxylation		d) Oxidative phosphoryl							
237. How much percentage									
a) 2	b) 9	c) 8	d) Less than 7						
238. Calculation of ATP gain		n certain assumptions. Cho	ose the correct option in						
accordance with the sta		L							
	ning is sequential and order	ıy							

- c) TCA cycle and ETS pathway follow one after another
- d) All of the above
- 239. Sucrose is converted into
 - a) Glucose and fructose

b) Triose phosphate and pyruvic acid

c) Oxlic acid and citric acid

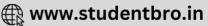
- d) Citric acid and pyruvic acid
- 240. Which of the following respiratory substrates requires the highest number of oxygen molecules for its complete oxidation?
 - a) Tripalmitin
- b) Triolein
- c) Tartaric acid
- d) Oleic acid
- 241. The metabolic pathway through which the electron passes from one carrier to another is called
 - a) Electron transport system

b) Electron procedure system

c) Electron moving procedure

- d) None of the above
- 242. In which one of the following options, the two names refer to one and the same thing?
 - a) Citric acid cycle and Calvin cycle
- b) Tricarboxylic acid cycle and urea cycle

c) Krebs' cycle and Calvin cycle


- d) Tricarboxylic acid cycle and citric acid cycle
- 243. The complete combustion of glucose in respiration is represented by
 - a) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$
 - b) $C_6H_{12}O_6 + 6CO_2 \rightarrow +6O_2 + 6H_2O + Energy$
 - c) $C_6H_{12}O_6 + 6O_2 + 6CO_2 \rightarrow +6CO_2 + 6H_2O + Energy$
 - d) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + ATP \rightarrow 6CO_2 + 6H_2O + 6O_2 + Energy$
- 244. The overall goal of glycolysis, Krebs' cycle and the electron transport system is the formation of
 - a) ATP in small stepwise units

b) ATP in one large oxidation reaction

c) Sugars

- d) Nucleic acids
- 245. In glycolysis, NADH + H⁺ is formed from NAD, when
 - a) 3-phosphoglyceral dehyde (PGAL) is converted to 1, 3-bisphosphoglycerate (BPGA)
 - b) Triose phosphate is converted to 2-phosphoglycerate
 - c) 2-phosphoglycerate is converted to 2-phosphopyruvate
 - d) 2-phosphopyruvate is converted to 2-pyruvic acid

RESPIRATION IN PLANTS

						: ANS	W	ER K	ΕY	:					
1)	С	2)	b	3)	а	4)	а	129)	d	130)	b	131)	a	132)	a
5)	c	6)	c	7)	c	8)	c	133)	b	134)	d	135)	c	136)	d
9)	b	10)	d	11)	b	12)	a	137)	a	138)	d	139)	a	140)	b
13)	c	14)	a	15)	a	16)	b	141)	c	142)	С	143)	a	144)	b
17)	b	18)	c	19)	d	20)	b	145)	a	146)	a	147)	b	148)	b
21)	d	22)	c	23)	b	24)	b	149)	d	150)	d	151)	c	152)	a
25)	b	26)	c	27)	a	28)	a	153)	a	154)	b	155)	a	156)	d
29)	b	30)	c	31)	d	32)	a	157)	b	158)	d	159)	a	160)	d
33)	a	34)	a	35)	b	36)	a	161)	a	162)	a	163)	a	164)	c
37)	C	38)	d	39)	b	40)	c	165)	d	166)	a	167)	a	168)	a
41)	b	42)	a	43)	d	44)	a	169)	a	170)	c	171)	b	172)	a
45)	c	46)	b	47)	c	48)	b	173)	b	174)	c	175)	a	176)	b
49)	a	50)	b	51)	C	52)	d	177)	d	178)	a	179)	d	180)	a
53)	d	54)	d	55)	C	56)	d	181)	b	182)	b	183)	a	184)	c
57)	d	58)	C	59)	a	60)	a	185)	b	186)	d	187)	c	188)	b
61)	a	62)	C	63)	c	64)	a	189)	a	190)	b	191)	c	192)	b
65)	c	66)	a	67)	b	68)	a	193)	c	194)	c	195)	b	196)	a
69)	b	70)	a	71)	d	72)	d	197)	b	198)	d	199)	d	200)	d
73)	C	74)	b	75)	b	76)	c	201)	c	202)	b	203)	a	204)	b
77)	C	78)	C	79)	C	80)	a	205)	c	206)	b	207)	a	208)	d
81)	c	82)	d	83)	b	84)	a	209)	c	210)	a	211)	a	212)	a
85)	a	86)	b	87)	a	88)	a	213)	d	214)	a	215)	d	216)	d
89)	d	90)	c	91)	a	92)	d	217)	b	218)	a	219)	d	220)	a
93)	b	94)	d	95)	C	96)	a	221)	C	222)	c	223)	a	224)	b
97)	b	98)	d	99)	c	100)	c	225)	C	226)	d	227)	c	228)	C
101)	C	102)	d	103)	a	104)	a	,	a	230)	d	231)	b	232)	C
105)	b	106)	b	107)	C	108)	a		b	234)	b	235)	b	236)	d
109)	c	110)	a	111)	C	112)	d	237)	d	238)	d	239)	a	240)	b
113)	b	114)	c	115)	c	116)	a		a	242)	d	243)	a	244)	a
117)	b	118)	a	119)	a	120)	b	245)	a						
121)	a	122)	b	123)	a	124)	b								
125)	d	126)	a	127)	d	128)	a								

RESPIRATION IN PLANTS

: HINTS AND SOLUTIONS :

1 (c)

Complex I of electron transport system (ETS) is NADH dehydrogenase, which oxidase NADH produced in the mitochondrial matrix during citric acid cycle. Complex IV of cytochrome-and a_3 and two copper centres.

2 **(b)**

In fermentation, incomplete oxidation of glucose is achieved under anaerobic condition by sets of reactions where pyruvic acid is converted to ${\rm CO}_2$ ethanol and sometimes lactic acid

3 (a)

The cellular respiration first takes place in the cytoplasm.

4 (a)

The scheme of glycolysis was given by Gustav Embden, Otto Mayerhof and J Parnas. It is the only process in respiration for anaerobic organism. It is ofter referred as the EMP pathway

5 (c)

Glycolysis was discovered by Gustav Embden, Otto Mayerhof and J Parnas. To give honour to them the glycolysis pathway is also called EMP pathway by taking initial name of theirs

6 (c

Mitochondria contains various enzymes as follows:

1.Outer Membrane: Acetyl transferase, glycerophosphatase, phospholipase-A, monoamine oxidase, etc.

2.Inner Membrane: Cytochrome oxidase, dehydrogenase, succinate, NADH dehydrogenase, ATPase, etc.

3.Perimitochondrial Space: Adenylate kinase, nucleoside diphosphokinase, etc.

4.Matrix: Pyruvate dehydrogenase, citrate synthase, Aconitase, isocitrate dehydrogenase,

fumerase, α -ketogulatrate dehydrogenase, malate dehydrogenase, etc.

7 (c)

In eukaryotes, all the reactions of tricarboxylic acid (TCA) cycle or Krebs' cycle takes place in the matrix of mitochondria because all enzymes of this cycle are found in the matrix of mitochondria except Succinic dehydrogenase, which is located in the inner membrane of mitochondria.

In prokaryotes, Krebs' cycle occurs in cytoplasm.

8 **(c)**

Glyceraldehyde-3-phosphate is required for the oxidative reaction during glycolysis.

9 **(b)**

Aerobic respiration occurs in the presence of oxygen that leads to a complete oxidation of organic substances and releases CO₂, water and a large amount of energy. This type of respiration is most common in higher organism

10 (d)

On administration of glucose orally respiration will take place.

11 **(b)**

30 ATP molecules could be generated from 686 kcal energy.

12 (a)

NADPH is formed during light reaction of photosynthesis and also formed during hexose monophosphate shunt (HMP shunt) of glucose oxidation.

13 (c)

Plants can get along without respiratory organ because plant part takes care of its own gas exchange needs and less demand for gas exchange. Because only during photosynthesis are large volumes of gases exchanges and each leaf is well adapted to take care of its own needs, during these period

15 (a)

During the oxidation process (occurs in inner mitochondrial membrane during electron transport system) enormous amount of free energy is released, some of which is utilized by inner membrane sub units of F_1 particles containing three coupling factors and ATPase enzyme, in the synthesis of ATP molecules.

16 **(b)**

Pyruvate which is formed by the glycolytic catabolism of carbohydrate undergoes oxidative decarboxylation by a complex set of reactions catalysed by pyruvate dehydrogenase

17 **(b)**

The intermediate compound which link glycolsis with Krebs' cycle is acetyl Co-A.

18 (c)

All the enzymes of Krebs' cycle, fatty acid synthesis and amino acid synthesis are found in matrix but **Succinic dehydrogenase** and **cytochrome oxidase** are present on inner membrane of mitochondria.

19 (d)

Enolase works on 2-phosphoglyceric acid (3C-compound), Aconitase on citric acid (6C-compound). Fumerase on Fumaric acid (4C-compound) and alcohol dehydrogenase on acetaldehyde (2C-compound). Thus, increasing order of these enzymes based on the carbon number of the substrates on which they act is – IV, I, III, II.

20 **(b)**

Pyruvic acid synthesized in glycolysis must enter inside the mitochondnia, where oxidative Decarboxylation occurs in presence of NAD+, pyruvic acid Dehydrogenase complex and coenzyme-A.

Pyruvic acid + NAD⁺ + Co-A $\xrightarrow{+\text{Co-A}}$ Acetyl Co-A + CO₂+ NADH

21 (d)

Saccharomyces cerevisiae is a species of budding yeast. It is commonly known as 'baker's yeast' or 'brewer's yeast'. The yeast ferments sugars present in the flour or added to the dough, giving off carbon dioxide (CO_2) and alcohol (ethanol). The carbon dioxide is trapped as tiny bubbles in the dough, which rises.

22 (c)

Respiration and respiratory quotient is measured by respirometer

23 **(b)**

In Krebs' cycle, acetyl Co-A adds its two-carbon fragment to oxaloacetate, a four-carbon compound. The unstable bond of acetyl Co-A is broken as oxaloacetate the coenzyme and attaches to the acetyl group. The product is the 6C-citrate.

24 **(b)**

NADH is oxidised to NAD⁺ slowly in fermentation, through the reaction is very vigorous in case of aerobic respiration

25 **(b)**

Electron transport chain takes place in the inner mitochondrial membrane and consists of flavins, ubiquinone, cytochromes and oxygen as electron carriers.

Sequence of electron transport : $NADH_2 \rightarrow FAD \rightarrow Co\text{-}Q \rightarrow \\ Cytochrome -b \rightarrow Cyt\text{-}c_1 \rightarrow Cyt\text{-}a_3 \rightarrow \\ O_2$

26 (c)

During exercise where O₂ is inadequate for cellular respiration, pyruvic acid is reduced into lactic acid by lactate dehydrogenase

27 (a)

Fermentation accounts for only a partial breakdown of glucose whereas in aerobic respiration it is completely degraded to ${\rm CO_2}$ and ${\rm H_2O}$

28 **(a)**

N and P are required by plants for ATP formation.

30 (c

Pyruvic acid, generated in the cytosol is transported to mitochondria and thus initiate the second phase of respiration. Before pyruvic acid enters Kreb's cycle, operative in the mitochondria, one of the three carbon atoms of pyruvic acid is oxidised to carbon dioxide in a reaction called oxidative decarboxylation

31 (d)

Usually carbohydrate are oxidised to release energy, but proteins, fats and even organic acids can be used as respiratory substances in some plants, under certain condition

32 (a)

One of the three carbon atoms of pyruvic acid is oxidised to carbon dioxide. The combination of the remaining two carbon acetate unit is readily accepted by a sulphur containing compound coenzyme A (Co-A) to form acetyl Co-A. This is the

connecting link between glycolysis and Kreb's cycle

33 (a)

In eukaryotes, electron transport and oxidative phosphorylation occur in the inner membrane of mitochondria. The significant enzymes of inner mitochondrial membrane are enzymes of electron transport pathways viz. NAD, FAD, DPN (diphosphopyridine nucleotide) dehydrogenase, five cytochromes (cytochrome-b, cytochrome-c, cytochrome- c_1 , cytochromes-a and cytochrome- a_3), ubiquinone or coenzyme- Q_{10} , non-haem copper and iron, ATP synthetase, succinate fatty acid acyl transferase.

34 (a)

Saprophytes like fungi are dependent on dead and decaying matter

35 **(b)**

Mitochondria are known as power house of cell. Glyceraldehyde-3-phosphate dehydrogenation reaction is found in cytoplasm during glycolysis, other three reactions take place in mitochondria.

36 (a)

In the process of glycolysis, 6 carbon molecules of glucose is split into 2, 3-carbon molecules of pyruvic acid. In this, one molecules of NAD⁺ are reduced for each glucose molecule. The energy stored with the NADH is released in the electron transport chain. This process (glycolysis) occurs in cytosol

37 **(c)**

The oxidation of Succinic acid to Fumaric acid in Krebs' cycle is catalyzed by Succinic dehydrogenase. Succinic dehydrogenase is attach to mitochondrial inner membrane.

38 (d)

Succinate dehydrogenase enzyme is present on inner membrane of mitochondria and catalysed the oxidation of succinate to fumarate.

39 **(b)**

The TCA cycle starts with the condensation of acetyl group with oxaloacetic acid (OAA) and water to yield citric acid. The reaction is catalyzed by the enzyme citrate synthase and molecule of Co-A is released

40 (c)

Krebs' cycle is also called as citric acid cycle
because citric acid is the first product of this cycle
and also called Tricarboxylic acid cycle (TCA)
because citric acid is a called Tricarboxylic acid.

In eukaryotic organisms, all reactions of Krebs' cycle take place in matrix of mitochondria because all enzymes of this cycle are found in matrix of mitochondria except Succinic dehydrogenase (located in inner membrane of mitochondria).

41 (b)

In electron transport chain, cytochrome-a is an electron carrier, which contains copper with iron. It picks up electrons to oxygen. Therefore, oxygen accepts the terminal electrons.

42 (a)

In electron transport system oxygen acts as the final hydrogen acceptor where it derives the whole process by removing hydrogen from the system

43 (d)

If a starving plant is provided with glucose, its rate of respiration will increase because of the availability of food for respiration.

44 (a)

Malic acid is a product of aerobic respiration. Ethyl alcohol and lactic acid are formed as a result of anaerobic respiration (fermentation), while pyruvic acid is produced during both-aerobic and anaerobic respiration.

45 **(c)**

$$A - 2H^+$$
, $B - F_0$, $C - F_1$

46 (b

In Krebs' cycle, pyruvic acid is converted into carbon dioxide and water.

47 (c)

An enzyme may have areas that control the confirmation of active sites. They are called Allosteric sites. Such an enzyme is called Allosteric enzyme, e.g., glucokinase, phosphofructokinase. Substance, which bring about changes in Allosteric sites are called modulators.

48 **(b)**

In glycolytic pathway, 3PGAL is converted into 1, 3-diphosphoglyceric acid by an oxidation and phosphorylation reaction, which occurs in presence of H_3PO_4 and coenzyme NAD. 3-phosphoglyceraldehyde + NAD⁺ + Pi⁻² \rightarrow 3-phosphoglyceraldehyde dehydrogenase 1, 3-diphosphplyceric acid + NADH +H⁺

49 (a)

Pyruvic acid forms as a result of glycolysis in cytoplasm of cell. Oxidation of pyruvic acid into

acetyl Co-A begins the citric acid cycle (Krebs' cycle) in mitochondria.

50 **(b)**

When oxygen is not available, yeast or some other microbes respire anaerobically. In case of anaerobic respiration, the value of respiratory quotient is not utilized, eg,

$$\begin{array}{ccc} {\rm C_6H_{12}O_6} & \xrightarrow{\rm Zymase} & {\rm 3C_2H_5OH + 2CO_2 +} \\ {\rm Energy} \end{array}$$

Glucose Ethyl alcohol

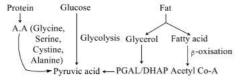
51 (c)

All living organisms need energy for carrying out daily life activities and is obtained by oxidation of macromolecules

52 (d)

In TCA cycle TCA substrate oxidise by releasing NADH + H⁺, which produces three ATP molecules. So, one glucose molecule through TCA produces 6 NADH + H⁺. So 18 ATP produced through electron transport chain. 2 FADH₂ of Kreb's cycle produced 4 ATP

53 (d)


Chemiosmotic hypothesis of ATP synthesis was proposed by Peter Mitchell in 1961.

54 (d)

Alcoholic fermentation by yeast causes decorboxylation of pyruvate to acetaldehyde producing CO2 as byproduct. Acetalatehyde accepts 2H atoms from NADH2 to produce ethanol

55 **(c)**

Pyruvic acid is intermediate compound, which is produced during oxidation of all types of respiratory substrates carbohydrates, fats and proteins

Option (d) Acetyl Co-A may also be answer but more appropriate is pyruvic acid as it formed directly by all these respiratory substrates

56 (d)

Respiratory quotient (RQ) is the ratio of the volume of carbon dioxide produced to the volume of oxygen consumed in respiration over a period of time. The values of RQ for various substrates are:

Carbohydrate - One

Fat, protein - Less than one Organic acid - More than one

Succulents - Zero

57 (d)

Pyruvic acid inters in the matrix of mitochondria and undergoes acetylation by oxidative Decarboxylation to form 2-carbon compound acetyl Co-A. Krebs' cycle is basically a catabolic cycle as it oxidises acetyl Co-A and organic acids into carbon dioxide and water.

58 (c

Out of the four phases of cellular respiration all except glycolysis (occur in cytoplasm-outside mitochondria) take place in mitochondria. The enzymes of Krebs' cycle are located in the matrix of mitochondria, while that of oxidative phosphorylation are located in inner mitochondrial membrane.

59 (a

ATP is an energy rich compound, which is structurally most similar to a molecule of RNA nucleotide.

60 (a)

DCMU is a herbicide which acts as an inhibitor of non-cyclic electron transport; PMA is fungicide which reduces transpiration; colchicine is an antimicrobial drug, it causes prevention of mitotic spindle formation thus blocking the mitosis

61 (a)

Oxidation of one molecule of NADH gives rise to 3 molecules of ATP.

62 (c)

An amphibolic pathway is a biochemical pathway that serves both anabolic and catabolic processes. An important example of an amphibolic pathway is the Krebs' cycle, which involves both the catabolism of carbohydrates and fatty acid and the synthesis of anabolic precursors for amino acid synthesis, eg, α -ketogluturate and oxaloacetate.

63 (c)

In alcoholic fermentation,

1.NADH (formed during conversion of triose3phosphate to 3-phosphoglycerate) is oxidized to
NAD⁺

2.Electrons are accepted by acetaldehyde formed by Decarboxylation of pyruvate.

64 **(a)**

Wherever oxygen involves as a substrate is known as oxidation. Therefore respiration is oxidation process

65 **(c)**

Net gain of ATP during aerobic respiration 1.Glycolysis provides 2ATP molecules and 2NADH+H⁺

- 2.Pyruvate oxidation yields 2NADH + H+
- 3.Krebs' cycle produces 2GTP molecules, 6NADH + H⁺ and 2FADH₂ molecules.
- 4.In electron transport system one NADH + H⁺ produce 3ATP and FADH₂ produces 32 or 34 ATP.

2ATP from glycolysis + 2GTP from TCA cycle and 32/34 ATP from ETS/ETC =38/36 ATP molecule.

66 (a)

Cyanides, antimycin A, carbon monoxide inhibits the process of electron transport chain

68 (a)

There is two step in glycolysis where ATP is formed or synthesised by ADP

- (i) When 1, 3, bisphosphoglyceric acid is changed into 3-phosphoglyceric acid
- (ii) When phosphoenolpyruvate (PEPA) is changed into pyruvic acid
- 69 **(b)**

Fats give maximum energy on oxidation. As palmitic acid is a fatty acid produced by hydrolysis of fat, hence, produces maximum number of ATP on oxidation.

70 (a)

Glycolysis is a series of reactions that takes place in the cytoplasm of all prokaryotes and eukaryotes. The role of glycolysis is to produce energy (both directly and by supplying substrate for the citric acid cycle and oxidative phosphorylation) and to produce intermediates for biosynthetic pathway.

71 (d)

Krebs' cycle begins with the reaction of acetyl Co-A with oxaloacetic acid in presence of the enzyme citrate synthase.

72 **(d)**

Acetyl Co-A is the link between glycolysis and Kreb cycle, for formation of acetyl Co-A the Co-factor TPP, lipoic acid and Mg²⁺, Co-A is required

73 **(c)**

Carbon dioxide is released by anaerobic repiration in plants

74 **(b)**

Respiratory quotient is the ratio of carbon dioxide output to oxygen used during respiration.

 $RQ = \frac{volume\ of\ carbon\ dioxide\ formed}{volume\ of\ oxygen\ utilized}$

Substrate

RQ

Carbohydrate

1

Protein

0.80

Fat

(tripalmitin)

0.70

Mixed

diet

0.85

Organic acids (oxalic acid)

4.0

75 **(b)**

TCA cycle starts with the condensation of acetyl group with Oxalo Acetic Acid (OAA) and water to yield citric acid. The reaction is catalysed by the enzyme citrate synthase

76 (c)

Respiratory quotient (the ratio between the volume of carbon dioxide liberated to the volume of oxygen absorbed in respiration) is less than one, when fats and proteins are respired. Castor oil is rich in fatty substances.

77 (c

Before entering respiratory pathway amino acids are deaminated

78 **(c)**

34 molecules of ATP (30 through NADH and 4 through FADH₂) are obtained as a result of oxidative phosphorylation. Rest 4 molecules are obtained as a result of direct phosphorylation.

79 (c)

Decarboxylation occurs in Krebs' cycle.

80 (a)

The citric acid cycle for production of energy in the cell was described by Kreb's, therefore TCA cycle is also known as Kreb's cycle

81 **(c)**

1 molecule of glucoses yields 262 8 kcal of usable energy

No. of glucose molecule required to produce $4800 \text{ kcal energy} = \frac{4800}{262.8} = 18$

1 molecule of ATP yield 7.3 kcal of usable energy No. of ATP molecules required to produce $4800 \text{ kcal energy} = \frac{4800}{7.3} = 657$

82 (d)

Coliforms are defined as aerobic or facultative anaerobic, Gram negative, non-endospore forming, rod-shaped bacteria that ferment lactose to form gas.

83 **(b)**

Due to excessive contraction of muscles (eg, leg muscles in hurdle race), the metabolic products of glycolysis accumulate in them which leads to muscle fatigue. Normally, pain is experienced in the fatigued muscle.

84 **(a)**

Like the bacterial respiration, in animal cells during the exercise when oxygen is inadequate for cellular respiration pyruvic acid is reduced to lactic acid by lactate dehydrogenase. The reducing agent is NADH + H $^+$ which is reoxidised to NAD $^+$ in both the process

85 (a)

During the respiration, compounds are needed to break and perform the next step to release ATP. It is specifically called respiratory substrate

86 **(b)**

The given compound $(C_{51}H_{98}O_6)$ is tripalmitin (2 molecules) used as a substrate. This substrate is used in respiration the respiratory quotient is less than 1. The given below derivation explained much clear way

Respiratory quotient = $\frac{\text{Evolved CO}_2}{\text{Consumed O}_2} = \frac{102 \text{ CO}_2}{145 \text{ O}_2} = 0.7$

87 **(a)**

All the energy required for life processes is obtained by oxidation of some macromolecules that we call food.

Only green plants and cyanobacteria can prepare their own food by the process of photosynthesis.

They trap light energy and convert it into chemical energy that is stored in the bond of carbohydrates like glucose, sucrose and starch

88 (a)

Intermediate in the pathway are utilised to synthesise other compound

89 (d

In plants, glucose is derived from sucrose which is the end product of photosynthesis or form storage carbohydrate

90 (c

As per chemiosmotic hypothesis ATP synthetase becomes active in ATP formation only where there is a proton gradient having higher concentration of H⁺ or protons on the inner side as composed to outer side.

91 (a)

Louis Pasteur observed that yeast cells grew rapidly in air but used little sugar and produced little carbon dioxide and ethanol. Under anaerobic conditions, they grew slower but used more sugar and produced more carbon dioxide and ethanol. This phenomenon of inhibition of breakdown of carbohydrate and production of ethanol is known as Pasteur effect. Biochemically, Pasteur effect is an Allosteric inhibition of phosphofructokinase enzyme in the presence of oxygen.

92 **(d)**

Organic acid evolves more carbon dioxide than volume of oxygen consumed when broken down as respiratory substrate under aerobic conditions, i.e., RQ is more than unity.

93 **(b)**

Anaerobic respiration in microorganisms is called **fermentation**. It takes place in absence of oxygen and produced lactic acid, ethyl alcohol, etc, from glucose. It is useful in manufacture of wine, beer and bread.

94 (d)

The main purpose of cellular respiration is to get energy that is utilised for functioning various purpose. Glucose energy is converted into ATP, which is utilised by cell

95 (c)

Glucose-6-phosphate yields less than 4 kcal/mol, when its phosphate bond is hydrolysed.

96 (a)

5g moles glucose on complete oxidation releases **3430** kcal of energy.

97 **(b)**

NADP, NAD and FAD are coenzyme formed from vitamins and work as electron acceptor in cellular metabolism.

98 (d)

Glycolysis of one molecule of glucose produces 2PGAL, thus of three molecules will produce 6PGAL.

Respiration of one molecule of glucose or 2PGAL produces 38ATP molecules, thus, of 6PGAL will produce 114 ATP molecules. Out of the given option, 120 ATP is the nearest correct answer.

99 (c

Aspartic acid $+ \alpha$ -ketoglutaric acid \rightarrow oxaloacetic acid + glutamic acid

This is an example of transamination reaction. In this, amino group of aspartic acid is transferred to glutamic acid.

100 (c)

Acetyl Co-A is a common intermediate of carbohydrate and fat metabolism. It is a substrate entrant of Krebs' cycle and acts as a connecting link between glycolysis and Krebs' cycle.

101 (c)

The pyruvic acid formed during glycolysis enters to mitochondria where oxidative Decarboxylation takes place and acetyl Co-A is formed. It occurs in presence of NAD+, pyruvic acid Dehydrogenase complex and coenzyme-A. pyruvic acid + NAD+ \rightarrow Acetyl Co-A + NADH + H+ + CO₂

103 (a)

Oxidation of one molecule of NADH give rise to 3 molecules of ATP while that of one molecule of ${\rm FADH_2}$ produces 2 molecules of ATP

104 (a)

Respiration is defined as breaking down of C-C bond of various organic molecules by oxidation process for cellular use

105 (b)

If oxygen is not available, pyruvic acid undergoes anaerobic respiration/fermentation, but under aerobic condition, the pyruvic acid enters into mitochondria and converted to **Acetyl Co-A**. Acetyl Co-A functions as substrate entrant for Krebs' cycle so, a connecting link between glycolysis and Krebs' cycle.

Glycolysis is the process of breakdown of glucose (hexose sugar) to two molecules of pyruvic acid through a series of enzyme mediated reactions. It occurs in cytoplasm and is common both to

aerobic and anaerobic respiration. Last product is pyruvic acid.

106 (b)

The electron acceptors of respiratory chains occur in linear sequences (cyt.-b, c, a, a_3) and their enzymes are components of the inner mitochondrial membrane.

107 (c)

In microorganisms, the term anaerobic respiration is replaced by fermentation. The pyruvic acid formed in glycolysis is transformed to ethyl alcohol and release 2 ATP molecules.

108 (a)

One of the three carbon atoms of pyruvic acid which is the end product of glycolysis is oxidised to carbon dioxide in a reaction called oxidative decarboxylation. Pyruvate is first decarboxylated and oxidised by the enzyme pyruvate dehydrogenase

109 (c)

Saccharomyces shows Pasteur's effect.

110 (a)

Fermentation is a type of cellular respiration found in plants and some unicellular microorganism, which does not require oxygen, i.e., anaerobic respiration, and that results in the production of ethanol from glucose and release of small amount of energy.

111 (c)

Krebs' cycle is also called as citric acid cycle. Citric acid (Tricarboxylic acid) is the first product of this cycle.

112 (d)

Six carbon dioxide molecules are released by complete oxidation of one glucose molecules. Two carbon dioxide molecules are released during oxidative Decarboxylation reaction and four carbon dioxide molecules are released in Krebs' cycle or tricarboxylic Acid cycle.

113 (b)

The respiratory decomposition of fatty acids is known as beta oxidation, which occurs in liver and adipose tissue. First of all, there is activation of fatty acid, then dehydrogenation of activated fatty acid takes place. This is followed by hydration. The β -hydroxyl acyl derivative is converted to β -keto derivative which then reacts with Co-A.

114 (c)

Respiratory Quotient (RQ) is the ratio of volume of CO_2 released to the volume of O_2 absorbed during respiration. In case of organic acids (eg., oxalic acid), more CO_2 is released than the O_2 absorbed. Hence, RQ of organic acids is always more than one.

 $2(COOH)_2 + O_2 \rightarrow 4CO_2 + 2H_2O + Energy$

$$RQ = \frac{4CO_2}{1O_2} = 4$$

115 (c)

ATP is called as energy currency of cell.

116 (a)

Breakdown processes within the living organism is also called catabolism

117 (b)

In fermentation, the incomplete oxidation of glucose is achieved under, anaerobic condition by set of reactions, where pyruvic acid is converted into carbon dioxide and ethanol. The enzyme, pyruvic acid decarboxylase and alcohol Dehydrogenase catalyse these reactions.

118 (a)

ATP is utilised at two steps – First in the conversion of glucose into glucose – 6 phosphate and second in the conversion of fructose – 6 – phosphate to fructose 1, 6 biphosphate

119 (a)

Aerobic respiration takes place within the mitochondria, the final product of glycolysis, pyruvate is transported from the cytoplasm into the mitochondria

121 (a)

Oxaloacetic acid – 4C. Phosphoglyceric acid – 3C Ribulose bisphosphite – 3C. Phosphoenl pyruvate – 3C

122 **(b)**

In the non-competitive inhibition of enzymes, the inhibitor (cyanide) has no structural similarity with the substrate (cytochrome-c) and binds to the enzyme at a point other than its active site which leads to change in globular structure of enzyme. Hence, even if the substrate is able to bind with the enzyme, catalysis will not take place.

123 (a)

During anaerobic respiration, one molecule of glucose gives two molecules of ATP. Thus, 8 molecules of ATP are produced.

124 **(b)**

Peter Mitchell (1961) proposed the chemiosmotic mechanism of ATP synthesis which, states that ATP synthesis occurs due to H⁺ flow through a membrane. It includes development of proton gradient and proton flow.

125 (d)

In the process of glycolysis, 6-carbon molecules of glucose are split into two 3-carbon molecules of pyruvic acid. In this, two molecules of NAD⁺ are reduced for each glucose molecule. The energy stored within the NADH is released in the electron transport chain.

126 (a)

Citric acid cycle is also known as Tricarboxylic acid cycle (TCA)

127 (d)

In respiration, whether it is aerobic or anaerobic glucose undergoes oxidation to form energy. In plants glucose is derived from sucrose which is the end product of photosynthesis or from storage carbohydrate. Sucrose is converted into glucose and fructose by the enzyme invertase to enter into the first step of respiration which is glycolytic pathway

128 (a)

Fat breakdown into fatty acid and glycerol before entering into the respiratory pathway

129 (d)

In glycolysis, water molecule is removed during conversion of 2-phosphoglycerate to phosphoenol pyruvate.

Conversion of fructose-6-phosphate to fructose 1-6 biphosphate is characterized by phosphorylation.

130 (b)

Pentose Phosphate Pathway (or Warburg-Lippman Dickens cycle) is an alternate method of aerobic respiration, which occurs in the cytoplasm of mature cell. This pathway accounts for 60% of total respiration in liver cells. In this, for every six molecules of glucose, one molecule is completely oxidized in CO_2 and reduced coenzymes, while 5 are regenerated.

131 (a)

In the first reaction of citric acid cycle one molecule of acetyl Co-A combines with 4-carbon Oxalo Acetic Acid (OAA) to form 6 carbon citric acid and Co-A is released

132 (a)

During fermentation, the pyruvic acid releases one molecule of CO₂ to produce acetaldehyde. The acetaldehyde, then reoxidises NADH and is itself reduced to ethanol. These reactions are catalysed by the enzyme, pyruvic acid decarboxylase and alcohol dehydrogenase

Glucose Glyceraldehyde-3-P * Ethanol ADP___NAD+ ATP NADH+H+ NADH+H+ 1,3, bisphospoglycerate → Pyruvate <

133 (b)

In the Krebs' cycle, when Succinic acid undergoes oxidation or dehydrogenation to form Fumaric acid, two hydrogens are transferred to FAD. FAD is reduced to FADH and enzyme involved in this step is Succinic acid dehydrogenase.

134 (d)

Respiratory pathway involved in both anabolism and catabolism, hence it is regarded as amphibolic pathway. In respiratory pathway not only the glucose but also amino acid and fatty acid can be used as intermediatory substances

The RQ value of 4 may be expected from complete | 145 (a) oxidation of oxalic acid.

136 (d)

Fatty acid, protein and earbohydrak would be broken down to acetyl Co-A before entering the respiratory pathway when it is used as a substrate

137 (a)

Anaerobic arespiration occurs without O2 which convince that it happens in lower organism

138 (d)

During the step of Krebs' cycle, where Succinic acid undergoes oxidation or dehydrogenation to form Fumaric acid, FAD is reduced to FADH2 and enzyme involved in this step is Succinic acid dehydrogenase.

Conversion of isocitric acid to α -ketoglutaric acid, malic acid to oxaloacetic acid and pyruvic acid to acetyl Co-A, all involve reduction of NAD to NADH+H+

139 (a)

One molecule of pyruvic acid converted in acetyl Co-A for 3 molecule of NADH + H+

140 (b)

In 1950, Kolliker for the first time seen mitochondria. Later on C Benda coined the term mitochondria. These are the sites of cellular respiration, oxidative phosphorylation, synthesis of haeme protein, cytochrome, myoglobin, etc.

141 (c)

The energy released by oxidation in respiration is not directly used but it stored as ATP. Which is broken down whenever energy needs to be utilised

142 (c)

RQ is one in case of carbohydrates, while for fatty acids is less than one and for organic acids RQ is more than one.

143 (a)

Sucrose or cane sugar is widely distributed among higher plants. Its commercial sources are solely sugarcane and beet. It is used as substrate for the formation of alcohol.

144 (b)

The correct sequence in glycolysis is Glucose-6-phosphate → 3-phosphoglyceraldehyde Phosphoenol ←3-phosphoglyceric acid↓ **Pyruvate**

1

Pyruvic acid.

Cyanide is a deadly poison of respiration and inhibit the activity of cytochrome-c oxidase complex (which contains cytochrome-a and cytochrome-a3) of electron transport chain of aerobic respiration. Thus, no proton gradient will be established and no ATP will be formed. Along with as the reduction of NADH and FADH2 is also ceased due to blockage of ETS, the availability of hydrogen acceptors like NAD+ and FAD is ceased for Krebs' cycle and glycolysis. Cyanide resistance pathway is anaerobic respiration.

146 (a)

Hexokinase causes phosphorylation of glucose to glucose-6 phosphate in both glycolysis and pentose phosphate pathway. Both glycolysis and phosphate pathway occur in cytoplasm. Glucose + ATP

Hexokinase Glucose 6-phosphate + ADP

147 (b)

The aerobic respiration takes place within the mitochondria, the final product of glycolysis pyruvate is transported from the cytoplasm into the mitochondria. The major events in aerobic respiration are

The complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms, leaving 3 molecules of CO₂.

The passing on of the electrons removed as part of the hydrogen atoms to molecular O_2 with simultaneous synthesis of ATP

148 **(b)**

Glycolysis is an essential and first path of respiration. It is common in both aerobic and anaerobic respiration and occurs in the cytosol of all living cells of prokaryotes as well as eukaryotes

149 (d)

Oxidative phosphorylation or ATP synthesis from NADH occur only under aerobic condition.

150 (d)

In ethyl alcohol fermentation,

(i) 2CH₃COCOOH
$$\xrightarrow{pyruvate decarboxylase}$$

Pyruvic acid

$$2CH_3CHO+2CO_2$$
 (†)

Acetaldehyde

(ii)
$$2CH_2CHO + 2NADH_2 \xrightarrow{Alcohol}$$

Acetaldehyde

$$2CH_3CH_2OH + 2NAD^+$$

Ethyl alcohol

151 (c)

The activity of succinate dehydrogenase is inhibited by Malonate.

152 (a)

Citric acid is produced by the fermentation of sugar by Aspergillus niger, *Mucor* sp and yeast.

153 (a)

In the process of respiration the compound, *i.e.*, glucose reacts with oxygen which is called oxidation therefore organic substance gets oxidised

154 (b)

Pyruvate is broken down to CO₂ and H₂O in citric acid of tricarboxylic acid cycle (TCA)

155 (a)

Preparatory phase before fermentation is called **upstream processing** while downstream processing is the name given to the stage after fermentation, when the desired product is recovered and purified.

156 (d)

Retting is facilitated by anaerobic butyric acid bacteria such as Clostridium botulinum, Clostridium tetani and Clostridium perfringens.

157 (b)

RQ is the ration of the volume of carbon dioxide released to the volume of oxygen taken in respiration. It depends on the nature of the substrate, which is oxidised. For carbohydrates RQ is one, for fats and proteins less than one but more than one for organic acids, etc.

158 (d)

The complex V of ETS of mitochondrial membrane is ATP synthase, which has a head piece, stalk and a base piece. Out of these, the head piece is identified as the coupling factor $1(F_1)$, stalk portion is necessary for binding i to inner mitochondrial membrane and base piece is isolated as F_0 and present within the inner mitochondrial membrane.

159 (a)

Protein breaks down into amino acid then enter into the glycolytic pathway

160 (d)

Ethyl alcohol is commercially manufactured from sugarcane. Molasses is the byproduct of sugar industry. Ethanol is produced by the fermentation of molasses (contains glucose and fructose) by using yeast, *Saccharomyces cerevisiae*.

161 (a)

Krebs' cycle takes place in matrix of mitochondria. Largest amount of phosphate bond energy is produced in Krebs' cycle due to oxidation by O₂. We get 6CO₂, 8NADH₂, 2FADH₂ and 2ATP molecules in Krebs' cycle.

162 (a)

In electron transport system, last electron acceptor is oxygen

163 (a)

Glucose and fructose are both converted to ethanol and carbon dioxide in presence of Zymase enzyme.

$$C_6H_{12}O_6 \xrightarrow{Zymase} 2C_2H_5OH + 2CO_2$$
Glucose or Ethanol
Fructose

164 (c)

Glycolysis is the degradation of glucose molecule with net gain of 2ATP molecules per glucose molecule. It occurs both in **aerobic** and **anaerobic** conditions.

165 (d)

For fatty substances, RQ is generally less than one. $2C_{51}H_{96}O_6 + 145O_2 \rightarrow 102CO_2 + 98H_2O$ $RQ = \frac{co_2}{O_2} = \frac{102}{145} = 0.7$ (less than unity)

166 (a)

DCMU is a herbicide which acts as an inhibitor of non-cyclic electron transport; PMA is fungicide which reduces transpiration; colchicines is an antimicrobial drug, it causes prevention of mitotic spindle formation thus blocking the mitosis.

167 (a)

With the complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms form 3 molecules of ${\rm CO_2}$, which occurs in matrix of the mitochondria

168 (a)

In anaerobic respiration bacteria produce lactic acid from pyruvic acid

169 (a)

Strains of Saccharomyces cerevisiae (yeast) are extensively used for leavening of bread. During fermentation, the yeasts produce alcohol and carbon dioxide, which leave and the leavened bread becomes porous.

170 (c)

Before entering respiratory pathway amino acids are deaminated

171 (b)

Pyruvic acid is an intermediate compound common for aerobic and anaerobic respiration because it is the end product in glycolysis and initial product in anaerobic respiration.

172 (a)

During alcoholic fermentation of glucose molecule, pyruvic acid is first decarboxylated to form acetaldehyde and CO_2 , which is then changed to ethyl alcohol with help of NADH. Net gain is 2ATP molecules per glucose molecule. $C_6H_{12}O_6 + 2ADP + 2Pi \rightarrow 2C_2H_5OH$ Glucose Ethyl alcohol $+ 2CO_2 + 2ATP + 2H_2O$

173 (b)

4 ATP are formed in glycolysis but 2 ATP used 2 ATP in Krebs' cycle 34 ATP from electron transport chain 40 ATP

174 (c)

It is a fact that the living cells are organised in thin layers inside and beneath the bark. They also have dead cells in the interior which provide mechanical support

175 (a)

Sunlight is the ultimate source of energy on earth. Green plants converted sunlight in form of sucrose. Animals take food from plants and get energy by oxidation of glucose.

176 (b)

Dough kept overnight in warm weather becomes soft and spongy due to fermentation.

177 (d)

RQ is the ratio of volume of carbon dioxide evolved and volume of oxygen consumed.

178 (a)

On oxidation of fats, maximum amount of energy is liberated.

179 (d)

 $NADH_2 \rightarrow NAD \rightarrow NADH_2$ $NADH_2 \rightarrow FAD \rightarrow FADH_2$

The former operates in liver heart and kidney cells and no energy is spent, while the second operates in muscle and nerve cells and lowers the energy level of 2NADH₂ by 2 ATP molecules

180 (a)

Krebs 'cycle involves 8 steps to oxidize 2 molecules of acetyl Co-A produced in transition reaction completely into 4CO_2 , $10\text{H}_2\text{O}$, 2ATP, 2FADH_2 and $6\text{NADH}+\text{H}^+$

181 (b)

 $Respiratory\ quotient = \frac{Evolved\ CO_2}{Consumed\ O_2}$ Hence, how much O_2 will consume. It all depends substrate

182 **(b)**

In anaerobic respiration, *i.e.*, absence of O_2 , glycolysis and fermentation involves. In fermentation incomplete oxidation of glucose is processed by sets of reaction where pyruvic acid is converted to CO_2 and ethanol

183 (a)

It is well known fact that photosynthesis in eukarytoes occurs in chloroplast whereas in prokaryotes it is in cytoplasm

184 (c)

Anaerobic respiration occurs in absence of oxygen. It is found in deep-seated tissues of plants and animals, germinating seeds, yeasts and bacteria. During anaerobic respiration of yeast,

two ATP produced from each glucose molecule. Hence, 38 ATP will produce from 19 glucose molecules.

185 (b)

In aerobic respiration, glycolysis is linked with Krebs' cycle through acetyl Co-A because pyruvic acid (end-product of glycolysis) first converted into acetyl Co-A. The acetyl Co-A enters in the Krebs' cycle. The formation of acetyl Co-A is involved with some cofactors like Mg ions, thiamine pyrophosphate (Vitamin-B₁), NAD+, Co-A and lipoic acid.

186 **(d)**

In anaerobic respiration CO2 is evolved but oxygen is not used. Therefore in such case respiratory quotient will be infinite. e. g.,

$$C_6H_{12}O_6 \xrightarrow{Zymase} 2 C_2H_5OH + 2 CO_2 + Energy$$

Glucose

Where, respiratory quotient = $\frac{\text{Evolved CO}_2}{\text{Consumed O}_2}$

$$= \frac{2 \text{ CO}_2}{0 \text{ O}_2} = \infty(\text{Infinity})$$

187 (c)

The NADH synthesised in glycolysis is transferred into the mitochondria and undergoes oxidative phosphorylation

188 (b)

Total gain of 38 ATP molecules during aerobic respiration of one molecule of glucose

189 (a)

During glycolysis, in the presence of enzyme Hexokinase, glucose is converted into glucose-6phosphate by using one ATP molecule in presence of Mg2+

190 (b)

In the presence of Zymase, alcoholic fermentation takes place.

191 (c)

During the conversion of Succinyl Co-A to Succinic 199 (d) acid, a molecule of GTP is synthesized. This is a substrate level phosphorylation. In a coupled reaction, GTP is converted to GDP with the simultaneous synthesis of ATP from ADP.

192 (b)

Pyruvic acid is 3C-compound. One of the three carbon atoms of pyruvic acid is oxidised to carbon dioxide in a reaction called oxidative decarboxylation. Pyruvate is first decarboxylated and then oxidised by the enzyme pyruvate dehydrogenase. The combination of the

remaining 2-carbon acetate unit is readily accepted by a sulphur containing compound, coenzyme A (Co-A) to form acetyl Co-A

194 (c)

Generally lower organism, e.g., bacteria and fungi performs anaerobic respiration but also occur in higher organism

195 (b)

Pathway - A is glycolysis \rightarrow 2 NADH + H⁻ Pathway – B is Kreb's cycle \rightarrow 6 NADH + H⁺ Pathway - C is Electron transport system Between pathway A and pathway B \rightarrow 2 NADH + H⁺ produced

196 (a)

In electron transport chain respiratory process are to release and utilise the energy stored in NADH + H+ and FADH2. This is accomplished when they are oxidised through the electron transport system and the electron are passed on to O2 resulting in the formation of H2O

197 (b)

During citric acid cycle, 3 molecules of NAD+ and one molecule of FAD (Flavin Adenine Dinucleotide) are reduced to produce NADH and FADH₂ respectively. These reduced electron carriers pass on the hydrogen atoms to oxygen through electron transport system, yielding II more ATP molecules for each molecule of pyruvic acid.

In addition one ATP molecules is generated directly during the cycle to give a total of 12 ATP molecule per pyruvic acid molecules. As two molecules of pyruvic acid are produced from each molecule of glucose a total of 24 molecules of ATP are formed during the citric acid cycle

198 (d)

When the fats respire, the value of RQ is less than one.

Glycolysis involves ten step for each step, specific enzyme needs to go next step

200 (d)

ATP is a coenzyme. Coenzyme is an organic cofactor molecule smaller than protein that bonds with a specific enzyme, while the reaction is being catalysed.

201 (c)

Oxidative phosphorylation refers to the synthesis of ATP from ADP and inorganic phosphate by chemiosmosis. It occurs with the help of energy

obtained from oxidation of reduced enzymes formed in cellular respiration.

202 (b)

Krebs' cycle or citric acid cycle occurs in the matrix of mitochondria. It occurs in aerobic respiration. Acetyl Co-A is the connecting link between glycolysis and Krebs' cycle. Pyruvic acid is oxidized into acetyl Co-A (6C), which is the first or initiating organic acid of Krebs' cycle.

203 (a)

Most cells of a plants have a part of their surface in contact with air. This is also facilitated by the loose packing of parenchyma cells in leaves

204 (b)

A variety of enzymes control different steps of cellular respiration.

205 (c)

NAD⁺ and NADP⁺ accepts two electrons and one proton to get reduced to NADH and NADPH respectively

206 (b)

The product of glycolysis is pyruvic acid the products of Krebs' cycle are CO₂ and water.

207 (a)

Chemiosmosis is the diffusion of ions across a selectively permeable membrane. More specifically, it relates to the generation of ATP by the movement of hydrogen ions across a membrane during cellular respiration.

ATP synthase is the enzyme that makes ATP by chemiosmosis. The generation of ATP by chemiosmosis occurs in chloroplasts and mitochondria as well as in some bacteria.

208 (d)

Cytochromes are small proteins (intrinsic membrane proteins) that contain a cofactor, haem, which holds an iron atom. The iron carries electrons and cycles between +2 and +3 oxidation states. These form a part of electron transport chain in mitochondria and chloroplast and act as an electron transporter or electron acceptor in respiration and photosynthesis.

209 (c)

RQ is the ratio of volume of carbon dioxide evolved and volume of oxygen consumed. If RQ is less than one it means the oxidation of the respiratory substrate consumed more oxygen than the amount of carbon dioxide released. Volume of carbon dioxide < Volume of oxygen

210 (a)

The flowchart given shows the step in glycolysis. The glucose 6-phosphate breaks into fructose 6-phosphate and then fructose 1, 6-bisphosphate. Fructose -1, 6 bisphosphate convert into 3-phophoglyceraldehydes and then 1, 3-bisphosphoglyceric acid

211 (a)

Cyanide reacts with one of the proteins (cytochrome-a₃) in the electron transport system and prevents transfer of electron to oxygen. It leads to checking the ATP formation through oxidative phosphorylation. ATP is required for active transport of substances across the plasma membrane, besides some other metabolic reactions.

212 (a)

Brandy and whisky requires both distillation and fermentation as fermentation inhibited at an alcohol level of 10-18%.

213 (d)

Plants, unlike animals have no specialised organs for gaseous exchange but they have stomata and lenticels for this purpose

214 (a)

Citric acid cycle was discovered by British Chemist Hans Kreb's in 1937

215 (d)

Acetobacter sp. Are of particular importance, commercially they also used in the production of vinegar by converting the ethanol in the wine to acetic acid.

216 (d)

In glycolysis, two molecules of ATP are consumed initially in converting glucose to fructose 1, 6-bisphosphate. Two triose phosphate molecules are formed from one glucose molecule. Four molecules of ATP are produced at substrate level phosphorylation. Therefore, net gain of ATP is $2ATP \times 2 - 2ATP = 2$.

217 (b)

The synthesis of ATP from ADP is called phosphorylation. Substrate level phosphorylation is directly linked to liberation of energy in chemical reaction of respiration, e.g., formation of GTP is Krebs' cycle.

218 (a)

Malonate an analogue of succinate is a strong competitive inhibitor of succinate dehydrogenase and, therefore, blocks the activity of citric acid cycle.

219 (d)

There is a total gain of 38 ATP molecules during aerobic respiration of one molecules of glucose. Out of these, two molecules of ATP are required for transporting the NADH produced in glycolysis (in cytoplasm) into the mitochondria for further oxidation. Hence, the net gain of ATP is 36 molecules.

220 (a)

Animals are heterotrophic, i.e., they obtain food from plants directly (herbivores) or indirectly (carnivores)

221 (c)

During Kreb's cycle as a result of formation of 6NADH, 18 ATP are produced through ETS in mitochondria

222 (c)

In glycolysis, one molecule of glucose changes into two molecules of pyruvic acid. Glycolysis takes place in cytoplasm.

223 (a)

Electron transport system occurs in inner mitochondrial membrane. Electron from NADH produced in the mitochondrial matrix during citric acid cycle are oxidised by an NADH dehydrogenase (complex) and electrons are then transferred to ubiquinone located within the inner membrane

224 (b)

Krebs' cycle is also known as citric acid cycle (first compound of Krebs' cycle) or Tricarboxylic acid cycle (TCA). This cycle takes place in the matrix of mitochondria because all necessary enzymes are found in the matrix of mitochondria.

225 (c)

Ratio of the volume of carbon dioxide liberated to the volume of oxygen absorbed during respiration 237 (d) is called Respiratory Quotient (RQ)

Carbohydrate - One

Fat, protein - Less than one

Organic acid - More than one

Succulents - Zero

226 (d)

Calorie is the unit of heat

227 (c)

Aspergillus is used to prepare the Roquefort cheese.

228 (c)

Cellular respiration is the process, in which energy stored in a glucose molecule is released by oxidation. Hydrogen atoms are lost by glucose and gained by oxygen.

229 (a)

The term 'glycolysis' has originated from the greek words, glycos for sugar and lysis for splitting

230 (d)

Mitochondria are called power house of cell, as the food material is gradually oxidised and energy generated is stored in the form of ATP. The enzymes for Krebs' cycle (aerobic respiration) and fatty acid oxidation are found in the matrix of mitochondria.

231 (b)

Incomplete breakdown of sugar in anaerobic respiration forms alcohol and dioxide.

232 (c)

The total energy trapped per gm mole of glucose is 1292 kJ or 309.7 kcal with on efficiency of 45%

233 (b)

Glycolysis is an essential and first path of respiration. It is common in both aerobic and anaerobic respiration and occurs in the cytosol of all living cells of prokaryotes as well as eukaryotes.

234 **(b)**

Synthesis is anabolism

235 (b)

Oxalosuccinic acid -6 C-compound Malate -4 C-compound α-ketoglutarate -5 C-compound Pyruvic acid -3 C-compound

236 (d)

Respiratory chain for oxidative phosphorylation is located in the inner membrane of mitochondrial envelope.

In both lactic acid and alcohol fermentation 7% of the energy in glucose is released and all of it is trapped as high energy bonds of ATP

238 (d)

There is a sequential, orderly pathway functioning, with one substrate forming the next and with glycolysis TCA cycle and ETS pathway following one after another

239 (a)

Sucrose is converted into glucose and fructose by the enzyme invertase and these two monosaccharide readily enter the glycolytic pathway

240 (b)

Triolein is unsaturated glyceride, whereas tripalmitin is a saturated glyceride. The required number of oxygen molecule for oxidation of unsaturated glyceride is always more than for saturated glyceride.

241 (a)

The pathway through which the electron passes from one carrier to another is called the electron transport system. It is operative in the inner mitochondrial membrane

242 (d)

Tricarboxylic acid cycle is also known as citric acid cycle or Krebs' cycle. This is an aerobic process which takes place in the matrix of mitochondria. Krebs discovered this cycle in 1937. So, this is also known as Hens Krebs' cycle.

243 (a)

It is the fact that in respiration glucose is broken down in oxidation within the cell and ${\rm CO_2}$, water and energy is released therefore the suitable equations is

 $C_6H_{12}O_6 + 6O_2 \rightarrow +6CO_2 + 6H_2O + Energy$

244 (a)

Glycolysis, Krebs' cycle and electron transport system are meant for ATP synthesis in different steps. ATP is the energy currency of cell.

245 (a)

There is one step in glycolysis where NADH + H⁺ is formed from NAD⁺ when 3-phosphoglyceraldehyde (PGAL) is converted to 1, 3-bisphosphoglycerate (BPGA)

